ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester Supplementary Examinations, June/July - 2024

MATHEMATICS-III (COMMON TO EEE, ECE & CSE)

Time: 3 Hours

Max.	Mar	ks:	75	
	/0.5	7.7		٠,

	Section – A (Short Answer type questions) r All Questions	Course Outcome	(25 B.T Level	Marks) Marks
1.	What is the general form of the Newton-Raphson iteration formula for finding the roots of a function $f(x)$.	CO1	L1	2M
2.	Apply the bisection method to find an approximation of the root of the function $f(x) = x^3 - x - 2$ in the interval [1,2] after two iterations.	CO1	L2	3M
3.	Given the function $f(x)=x^3$, Compute the forward difference Δf at $x=2$ with a step size of $h=0.1$.	CO2	L2	2M
4.	Construct a backward difference table for the following data $\begin{bmatrix} x & 0 & 10 & 20 & 30 \\ y & 0 & 0.174 & 0.347 & 0.518 \end{bmatrix}$	CO2	L2	3M
5.	State the formula for Simson's 1/3 rule.	CO3	L1	2M
6.	Use the trapezoidal rule to approximate the integral of $f(x) = x^2$ from $x = 0$ to $x = 2$ using 4 equal subintervals.	CO3	L2	3M
7.	List the steps involved in the Euler's method and write the formula used for each iteration.	CO4	L1	2M
8.	Use Taylor's series method with h=0.1 to find approximate values of the solution of the initial value problem $y^1=x^2+y^2$, $y(0)=1$ at $x=0.1$.	CO4	L2	3M
9.	Find $\frac{\partial z}{\partial x}$ for $z=x^2-2xy+y^2$.	CO5	L2	2M
10.	Form the PDE by eliminating the constants a and b from $z=(x+a)(y+b)$.	CO5	L2	3M
	Section B (Essay Questions)			
Answe	r all questions, each question carries equal marks.	•	X 10M =	-
11. A)	Solve the following system of equations using the LU	CO1	L3	10M
	Decomposition method: x+y+z=1; 3x+y-3z=5; x-2y-5z=10.			
B)	Solve the system of equations using the Jacobi method: $26x_1+2x_2+2x_3=12.6$; $3x_1+27x_2+x_3=-14.3$; $2x_1+3x_2+17x_3=6.0$;	CO1	L3	10M
12. A)	Given a set of points for the function $y=f(x)$, evaluate $f(33)$ using Gauss backward interpolation formula: x 25 30 35 40 f(x) 0.25 0.3 0.33 0.37	CO2	L3	10M
В)	Using Lagrange's interpolation formula find y(20) from the following table: x 5 6 7 10 y 12 13 14 15	CO2	L3	10M

Question Paper Code: R15A12HS02/R14A12HS02

L3

L3

L3

L3

L3

10M

10M

10M

10M

10M

CO3

CO3

CO4

CO4

CO5

13. A) Consider the time series data given below:

x	8	3	2	10	11	3	6	5	6	8
y	4	12	1	12	9	4	9	6	1	14

Use the least square method to determine the equation of straight line of best fit for the data.

OR

B) Determine the constants a and b by the method of least squares such that $y=ae^{bx}$.

X	0	1	2	3	4	
у	1	6	17	32	44	

14. A) Use the Runge-Kutta 4th order method with step size h=0.1to find approximate values of the solution of the initial value problem y¹+3y=7e^{4x}, y(0)=2 at x=0.2

OR

- B) Using Milne Thomson predictor corrector method find y when x=0.1 given $y^1=x-y^2$, y(0)=1.
- 15. A) From the PDE by eliminating the arbitrary functions z=f(2x+3y)+g(4x+5y).

OR

B) Solve
$$p^3+q^3=z^3$$
.

CO5