ANURAG Engineering College

(An Autonomous Institution)

I B.Tech I Semester Supplementary Examinations, Jan/Feb-2024

MATHEAMTICS – I (COMMON TO ALL BRANCHES)

Time: 3 Hours Max. Marks: 75

Section – A (Short Answer type questions) Answer All Questions		Course Outcome	(25 B.T Level	Marks) Marks
1.	Write the elementary row transformations while the matrix to convert into row echelon form	CO1	L1	2M
2.	Determine the rank of a matrix by reducing into row echelon form $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$	COI	L2	3M
3.	Is the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ verify the Cayley Hamilton theorem. If	CO2	L2	2M
4.	so determine A^8 Write the characteristic equation of the matrix $A = \begin{pmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ -6 & -2 & 5 \end{pmatrix}$	CO2	L1	3M
5. 6.	Describe the test case conditions of D-Alembert's Ratio test Test for convergence $\frac{(n+3)!}{3!n!3^n}$	CO3 CO3	L1 L2	2M 3M
7. 8.	Describe the Lagrange's mean value theorem Evaluate $\int_0^{\frac{\pi}{2}} \sin^6\theta \cos^7\theta \ d\theta$ by using the beta function	CO4 CO4	L1 L2	2M 3M
9.	Determine the Jacobian $\frac{\partial(u,v)}{\partial(x,v)}$ for $u=x$ siny, $v=y$ sinx.	CO5	L1	2M
10.	Divide 24 into three parts such that the continued product of the first, square of second and the cube of the third may be maximum then find their dimensions	CO5	L2	3M
	Section B (Essay Questions)			
	r all questions, each question carries equal marks.	•	X 10M	•
11. A)	Using the Gauss-Jordan method determine the solution of the following system of equations $2x - 2y + 4z + 3t = 9, x - y + 2z + 2t = 6,2x - 2y + z + 2t = 3, x - y + t = 2$ OR	CO1	L3	10M
В)	Using the row reduced echelon form determine the inverse of a matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 0 \\ 3 & 1 & 2 \end{pmatrix}$	CO1	L3	10M
12. A)	i) Verify the Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 5 & 6 \end{pmatrix}$ and hence find the inverse of A. Determine A^4 ii) Express $B = A^8 - 11A^7 - 4A^6 + A^5 + A^4 - 11A^3 - 3A^2 + 2A + I$ as a quadratic polynomial in A. then determine B.	CO2	L3	10M
B)	Determine the nature, index and signature of the quadratic form $2x^2 + 2y^2 + 3z^2 + 2xy - 4xz - 4yz$.	CO2	L3	10M

13. A)	Test for convergence of the series $1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \cdots$ OR	CO3	L3	10M
В)	Examine the following series for absolute convergence $1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \frac{1}{9^2} (-1)^{n+1} \frac{1}{(2n-1)^2}$	CO3	L3	10M
14. A)	Verify the Cauchy's mean value theorem for the functions $f(x) = x^4$, $g(x) = x^2$ in the interval [a,b]	CO4	L3	10M
	OR			
B)	Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\cot \theta} \ d\theta$	CO4	L3	10M
15. A)	A rectangular box open at the top is to have a volume of 32 cubic feet find the dimension of the box requiring least material for its construction?	CO5	L3	10M
	OR			
B)	Examine for functional dependency, if so find the relation between them $u = x^2 e^{-y} coshz$, $v = x^2 e^{-y} sinhz$, $w = 3x^4 e^{-2y}$	CO5	L3	10M