ANURAG Engineering College

(An Autonomous Institution)

I B.Tech I Semester Supplementary Examinations, Jan/Feb-2024

APPLIED PHYSICS (COMMON TO ECE & CSE)

Time: 3 Hours			Max. Marks: 75		
Section – A (Short Answer type questions) Answer All Questions		Course	B.T	Marks) Marks	
1.	What is coherence? Write different types of coherence?	Outcome CO1 CO1	Level L1 L2	2M 3M	
2. 3. 4.	Explain polarization by reflection? What is Total Internal Reflection? Explain Explain the important characteristics of LASERs?	CO2 CO2	L1 L2	2M 3M	
5. 6.	What are the draw backs of Classical Free Electron theory? Explain about Heisenberg's uncertainty principle?	CO3 CO3	L1 L2	2M 3M	
7. 8.	Explain about E-K diagram? Write a short note on temperature dependence of Fermi level?	CO4 CO4	L2 L1	2M 3M	
9. 10.	What are direct and indirect band gap semiconductors? What are the different applications of LEDs?	CO5 CO5	L1 L1	2M 3M	
Section B (Essay Questions)					
11. A)	r all questions, each question carries equal marks. Illustrate Newton's rings experiment and obtain an expression for dark ring diameter in the reflected light. OR	CO1	X 10M : L3	= 50M) 10M	
В)	Demonstrate Fraunhofer diffraction due to single slit for obtaining the condition for principal maximum and minimum	CO1	L3	10M	
12. A)	Build an expression for acceptance angle and Numerical Aperture for an optical fibre cable	CO2	L3	10M	
В)	OR Construct Ruby Laser system with a neat sketch and explain its working using energy level diagram	CO2	L3	10M	
13. A)	Construct an expression for density of states and obtain an expression for carrier concentration in a metal by using Fermi-Dirac distribution function OR	CO3	L3	10M	
В)	Analyze and apply Schrodinger time independent wave equation for obtaining eigen values and eigen functions for a particle in 1-D potential well	CO3	L3	10M	
14. A)	Analyze the electron motion in a periodic potential by using Kronig-Penny model OR	CO4	L3	10M	
B)	Calculate the carrier concentration of electrons in the case of Intrinsic semiconductor by using Fermi-Dirac distribution function	CO4	L3	10M	
15. A)	With the help of neat diagram explain the construction and working of a Solar Cell OR	CO5	L3	4M	
B)	Investigate the semiconductor diode Laser device structure and its characteristics	CO5	L3	10M	