ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester Supplementary Examinations, June/July – 2024

MATHEMATICS - II COMMON TO CE, EEE, ME, ECE & CSE

Time: 3 Hours Max. Marks: 75

				_	
Section – A (Short Answer type questions)			(25]	Marks)	
Answer All Questions		Course	B.T	Marks	
		Outcome	Level		
1.	Find an integrating factor of $(x^2 + y^2) dx - 2xy dy = 0$	CO1	L1	2M	
2.	Find orthogonal trajectories of $y^2 = 4ax$.	CO1	L2	3M	
3.	Find the complementary function of $\frac{d^4y}{dx^4} - y = 5 + x$	CO2	L1	2M	
4.	Find the particular integral of $(D^2 + 4)y = 2e^x \sin x$	CO2	L1	3M	
5.	Change the order of integration $\int_0^{4a} \int_{\frac{x^2}{12}}^{2\sqrt{ax}} dy dx$	CO3	L2	2M	
6.	Find the value of $\int_0^{\frac{\pi}{4}} \int_0^1 r dr d\theta$	CO3	L1	3M	
7.	If $\emptyset = x^2 y^2 z^2$, then find the value of grad \emptyset	CO4	L2	2M	
8.	Find constants a, b, c.	CO4	L2	3M	
	So that $\overline{V} = (x + 2y + az)\hat{i} + (bx - 3y - z)\hat{j} + (4x + cy + 2z)\hat{k}$ is irrotational.				
9.	If $\overline{F} = (2x^2 - 3z) \widehat{\imath} - 2xy \widehat{\jmath} - 4x \widehat{k}$, find the limits for $\iiint_{V}^{\square} \nabla \overline{F} dV$,	CO5	L1	2M	
	Where v is the volume of the region bounded by $x = 0$, $y = 0$, $z = 0$ and $2x+2y+2z = 4$.				
10.	State Green's theorem.	CO5	L1	3M	
	Section B (Essay Questions)				
Answe	Answer all questions, each question carries equal marks.		$(5 \times 10M = 50M)$		
11. A)		CO1	L2	5 M	
11.11)	ii) A body kept in air with temperature at 25°c cools from 140°c to 80 °c in 20 minutes. Find when the body cools down to 35°c.	CO1	L3	5 M	
	OR				
B)	i) Solve: $\frac{dy}{dx} + 2xy = e^{-x^2}$	CO1	L2	5 M	
	ii) Find the orthogonal trajectories of $r = a(1 + cos\theta)$.	CO1	L2	5 M	
12. A)	Find the solution of $y^{111} - y = e^x + \sin 3x$ OR	CO2	L2	10M	
B)	Find the solution of $\frac{d^2y}{dx^2}$ + 9y = Cosec3x by using method of variation	CO2	L3	10M	
	of parameters.				
13. A)	Change the order of integration and hence evaluate $\int_0^1 \int_{x^2}^{2-x} xy dy dx$.	CO3	L3	10M	

В)	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyz dz dy dx$	CO3	L3	10M
14. A)	i) Find the directional derivative of $f = xy + yz + zx$ in the direction of vector $i + 2i + 2k$ the point $(1,2,0)$.	CO4	L2	5 M
	ii) For what value of λ , $F = (x+3y)i + (y-2z)j + (x+\lambda z)k$ is Solenoidal? OR	CO4	L2	5 M
B)	i) Find the angle between the normal to the surfaces $x^2 = yz$ at the point $(1, 1, 1)$ and $(2, 4, 1)$	CO4	L3	5 M
	ii) Prove that $\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}$	CO4	L2	5 M
15. A)	Evaluate $\iint_S \overline{F} \cdot \overline{n} ds$, if $\overline{F} = (x + y^2) \widehat{\iota} - 2x \widehat{\jmath} + 2yz \widehat{k}$, and s is the surface of the plane $2x + y + 2z = 6$ in the first octant.	CO5	L3	10M
B)	OR Verify Green's theorem in the VV -plane for $\int (xy \pm y^2) dy \pm x^2 dy$	CO5	L2	10M
Б)	Verify Green's theorem in the XY -plane for $\int_c (xy + y^2) dx + x^2 dy$ where C is the closed curve of the region bounded by $y = x$, $y = x^2$.	COS	1.2	TOIVI