ANURAG Engineering College

(An Autonomous Institution)

I B. Tech II Semester Supplementary Examinations, June/July – 2024

ENGINEERING PHYSICS COMMON TO CE, EEE & MECH

Time: 3 Hours Max. Marks: 75

Time.	Silvars	111	MAR 1711661	ILG. /
Section – A (Short Answer type questions)		(25 Marks) Course B.T Marks		
Answe	r All Questions	Outcome	Level	Maiks
1.	Conditions for simple harmonic motion.	CO1	L2	2M
2.	What is resonance and give the condition of resonance in forced	CO1	L2	3M
۷.	harmonic oscillator.	COI	LZ	3101
3.	Deduce equation for wavelength of source from grating element	CO2	L2	2M
4.	Explain the concept of polarization by double refraction?	CO2	L2	3M
5.	Define snell's law and critical angle	CO3	L1	2M
6.	Draw energy level diagram for Ruby laser	CO3	L2	3M
7.	Define space lattice	CO4	L1	2M
8.	Draw the crystal structure and lattice parameters for orthogonal crystal system.	CO4	L2	3M
0	Write the properties of anti-ferromagnetic materials.	CO5	L1	2M
10.	Derive equation for local field.	CO5	L2	3M
10.	Donve equation for focul more.	000	22	J111
	Section B (Essay Questions)	(5.3	57 1 O B /F	50M)
	r all questions, each question carries equal marks.		X 10M	
11. A)	Deduce the mathematical expression for a damped oscillator and explain different damping conditions.	CO1	L2	10M
77)	OR	001	т о	1014
В)	Derive an equation for the motion of a transverse wave? What are stationary waves give an example?	CO1	L2	10M
12. A)	Define Huygen's principle, Superposition of waves and Coherence,	CO2	L3	10M
	Derive bright band with for Young's double slit experiment			
	OR	~~~		4.031.6
B)	Mathematically evaluate that the brightness and bright fringe width changes with the order in Diffraction through single slit	CO2	L3	10M
13. A)	Explain the different types optical fibers based on refractive index	CO3	L2	10M
	profile and number of modes in detail.			
	OR			
B)	What are the characteristics of the laser and Derive relation between Einstein coefficients relation.	CO3	L2	10M
	Linstein coefficients relation.			
14. A)	Write detailed note on 7 crystal systems based on their symmetry	CO4	L3	10M
	properties. Calculate inter planar spacing of a cubic plane (111) with lattice constant 1.2A°.			
	OR			
B)	Define Bragg's law and Explain construction and working of Powder	CO4	L3	10M
(ط	diffraction method.	CO4		1 0141

R18

15. A)	Derive equation for origin of magnetic moment and Write detailed note on classification of magnetic materials based on magnetic moment.	CO5	L2	10M
	OR °			
B)	Derive the relation between polarizability and dielectric constant and write a note on dielectrics applications	CO5	L3	10M