ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester Supplementary Examinations, June/July - 2024

ENGINEERING MECHANICS (COMMON TO CIVIL & MECH)

Time: 3 Hours

Max. Marks: 75

Section – A (Short Answer type questions)			(25 Marks)	
Answer All Questions		Course	B.T	Marks
		Outcome	Level	
1.	State Lami's theorem.	CO1	L1	2M
2.	What are the steps followed while drawing free body diagrams?	CO1	L1	3M
3.	Define the terms: i) Coulomb Friction; ii) Angle of friction.	CO2	L1	2M
4.	Define limiting friction and impending motion.	CO2	L1	3M
5.	What is the Centroid of a Quarter circle of radius 2 m?	CO3	L1	2M
6.	With the help of a sketch, show where does the Centroid of semi-	CO3	L2	3M
	circle lie.			
7.	State Perpendicular axis theorem.	CO4	L1	2M
8.	Define the term Moment of inertia.	CO4	L1	3M
9.	Explain the principle of impulse-momentum.	CO5	L2	2M
10.	Discuss the advantages of work-energy theorem.	CO5	L2	3M
Section B (Essay Questions)				
Answer all questions, each question carries equal marks.		$(5 \times 10M = 50M)$		
11. A)	Determine the resultant of the forces acting on a particle P shown in	CO1	L3	10M
,	figure.			
	500 N			

B) Replace the system of forces and couple shown in figure by a single CO1 L3 10M force couple system at A.

12. A) Two blocks W₁ and W₂ resting on two inclined planes are connected by a horizontal bar AB as shown in figure. If W₁ equals 1000N, determine the maximum value of W₂ for which the equilibrium can exist. The angle of limiting friction is 20⁰ at all rubbing faces.

CO₂

L3

10M

OR

Two blocks A and B are placed on inclined planes as shown in figure. The block A weighs 1000N. Determine minimum weight of the block B for maintaining the equilibrium of the system. Assume that the blocks are connected by an inextensible string passing over a frictionless pulley. Coefficient of friction µ between the block A and the plane is 0.25. Assume the same value for μ B

13. A) Find the centre of gravity of the L section shown in figure.

B) Find the centre of gravity of the I section shown in figure?

14. A) Derive the mass moment of inertia of a right circular cone of base radius R, height H and mass M about its axis.

CO₄ L3 10M

B) For the I-section shown in figure, find the moment of inertia about the Centroidal axis X-X perpendicular to the web.

CO₄ L3 10M

15. A) Find the work done in moving a 20 kg wheel by 2m up in an inclined plane with an angle of inclination equal to 30° coefficient of friction 0.25, if a force of 400N is applied at the center of the wheel as shown in the figure. What will be the angular velocity of the wheel after the wheel has travelled 4 m up the plane? Take radius of the wheel to be 0.1 m.

CO5 L3 10M

B) Describe and derive the work energy equation.

CO5 L3 10M

