Max. Marks: 75

ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester Supplementary Examinations, Jan/Feb-2024 ENGINEERING CHEMISTRY (COMMON TO ECE & CSE)

Time: 3 Hours

Section – A (Short Answer type questions) Answer All Questions		Course Outcome	(25 B.T Level	Marks) Marks
1.	Explain linear combination of atomic orbitals (LCAO)	CO1	L2	2M
2.	Explain M.O.T of benzene	CO1	L2	3M
3.	Define Potable water	CO2	L1	2M
4.	Explain types of hardness	CO2	L2	3M
5.	List out anode, cathode and electrolyte used in Lead acid storage battery	CO3	L1	2M
6.	Explain how the volume of metal oxide formed plays a key role in acting as a protective layer?	CO3	L2	3M
7.	Summarize the role of NaBH4 in organic chemistry	CO4	L2	2M
8.	Outline the synthesis of Asprin.	CO4	L2	3M
9.	Identify the monomers used for the synthesis of Bakelite	CO5	L2	2M
10.	Outline the synthesis of PVC	CO5	L2	3M
	Section B (Essay Questions)			
Answer all questions, each question carries equal marks.			X 10M	= 50M)
11. A)	 i). List out the Salient features of Molecular orbital theory. ii). On the basis of MOT draw molecular orbital energy level diagram of N₂ 	CO1	L3	5M 5M
	OR			
B)	i). Show through a diagram, the crystal field splitting of d-orbitals in octahedral complexes	CO1	L3	5M
	ii). Apply MOT diagrams and calculate the bond order in F ₂ and O ₂		L3	5M
12. A)	i) Determine the temporary, permanent and total hardness in ppm units for a water sample which showed the following analysis. Given CaCO3 = 32.4 mg/lit, MgCO3 =29.2 mg/lit, NaCl = 5.85 mg/lit, CaCl2 = 22.2 mg/lit, MgSO4 = 1.2 mg/lit, organic matter = 15.5 mg/lit. Given: (Atomic weight of Ca – 40, H – 1, C – 12, O – 16, Cl – 35.5, S – 32, Mg – 24)	CO2	L3	5M
	ii) With reactions explain why hard water does not form lather with soap? How can temporary and permanent hardness be removed? OR			5M
B)	i) Define boiler troubles? Differentiate scales and sludgesii) Differentiate Calgon conditioning and Phosphate conditioning.	CO2	L3	5M 5M
13. A)	 i) Classify the different types of batteries with examples. ii) Develop Hydrogen-Oxygen fuel cell with a neat design and chemical reactions. List out the applications of fuel cells. OR	CO3	L3	5M 5M

B)	i) Make use of cell reactions and explain the mechanism of electrochemical corrosion by oxygen consumption.	CO3	L3	5M
	ii) Utilize the cell reactions to explain the electroplating of copper			5M
14. A)	Discuss Unimolecular Nucleophilic Substitution reactions (SN ¹) with suitable example.	CO4	L3	10M
	OR			
B)	With neat diagrams explain which conformation of n-butane is highly stable?	CO4	L3	10M
15. A)	What is natural rubber? Why the process of vulcanization is required for natural rubber?	CO5	L3	10M
	OR			
B)	i) Compare Thermoplastics and Thermoset plastics with examples.ii) Explain the preparation, properties and applications of Thiokol rubber.	CO5	L3	5M 5M