ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester Supplementary Examinations, Jan/Feb-2024

MATHEMATICS - II (COMMON TO ALL BRANCHES)

Time: 3 Hours Max. Marks: 75

	A LIMENT D ALVAND				
Section – A (Short Answer type questions)		(25 Marks)			
Answer All Questions		Course Outcome	B.T Level	Marks	
4	77 (1 77			23.4	
1.	Define Exact differential equation.	CO1	L1	2M	
2.	Find the integrating factor of $(y + x)dx = (y - x)dy$.	CO1	L2	3M	
3.	Solve $(D^2 + 5D + 6)y = 0$	CO2	L2	2M	
4.	Solve $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \sin 2x$	CO2	L2	3M	
5.	Evaluate $\int_{y=0}^{2} \int_{x=0}^{3} xy dx dy$	CO3	L2	2M	
6.	Evaluate $I = \int_{0}^{1} \int_{1}^{2} \int_{2}^{3} xyz dx dy dz$	CO3	L2	3M	
7.	Define solenoidal vector.	CO4	L1	2M	
8.	If $\overline{F} = x i + xy\overline{j} + zx \overline{k}$, Evaluate curl \overline{F}	CO4	L2	3M	
9.		CO5	L1	2M	
		CO5	L2	3M	
10.	Apply Green's theorem to evaluate $\frac{1}{2} \oint (xdy - ydx)$ where R is the	005		5141	
	region bounded by $y = x$ and $y = x^2$.				
Section B (Essay Questions)					
Answer all questions, each question carries equal marks.		$(5 \times 10M = 50M)$			
	Solve $(y^4 + 2y)dx + (xy^3 + 2y^4 - 4x) dy = 0$.	CO1	L3	10M	
B)	A body is originally at $100^{\circ}c$ and cools down to $75^{\circ}c$ in 10	CO1	L3	10M	
-,	minutes. If the temperature of the air is $20^{\circ}c$, find the temperature of the body after 30 minutes and when will be the temperature be $25^{\circ}c$.	,			
12. A)	Solve the differential equation $(D^2 - 5D + 6)y = e^x sinx$ OR	CO2	L3	10M	
B)	Solve $(D^2 - 4D + 4)y = 8x^2e^{2x}\sin 2x$	CO2	L3	10M	
13. A)	Evaluate $\iiint_{y} (xy + yz + zx) dx dy dz$ where V is the region of	CO3	L3	10M	
	space bounded by $x = 0, x = 1, y = 0, y = 2, z = 0, z = 3$ OR				
B)	Evaluate $\int_0^{\frac{\pi}{2}} \int_{a(1-\cos\theta)}^a r^2 dr d\theta$	CO3	L3	10M	

- 14. A) Find the value of a and b so that the surface $ax^2 byz = (a + 2)$ is CO4 L3 10M orthogonal to the surface $4x^2y + z^3 = 4$ at (1, -1, 2).
 - B) Find the directional derivative of $2x^2 + z^2$ at (1,-1,3) in the CO4 L3 10M direction of $\bar{\imath} + 2\bar{\jmath} + 3\bar{k}$
- 15. A) Verify Gauss's divergence theorem for $\overline{F} = 2x^2y\overline{i} y^2\overline{j} + 4xz^2\overline{k}$ CO5 L2 10M taken over the region of the first octant of the cylinder $y^2 + z^2 = 9$ and z = 2.
 - B) Verify Stokes's theorem for $\overline{\overline{F} = y\overline{\iota} \mp z\overline{\jmath} + x\overline{k}}$ and upper surface is CO5 L3 10M the part of the plane $x^2 + y^2 + z^2 = 1$ above the xy-plane.