ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, Jan/Feb-2024 DIGITAL LOGIC DESIGN

(COMPUTER SCIENCE AND ENGINEERING)

Time: 3 Hours					Max. Marks: 75			
Sec	tion	(25 Marks)						
Ansv	wer A	Marks	CO	B.T. Level				
1.	the	What is the largest binary number that can be expressed with 12 bits? What is the equivalent decimal?		CO1	L1			
2.	Exp	ress -73.75 in 2's complement form.	3M	CO1	L2			
3.		Convert the following Boolean function to Canonical form. $F = \overline{AB} + BC + D$		CO2	L2			
4.	Def	Define Encoder. And how does an encoder differ from decoder.			L1			
5. 6.	Explain Half Adder. Draw the circuit diagram of 4-bit parallel adder/subtractor.			CO3 CO3	L1 L2			
7. 8.		Write the difference between combinational circuit and sequential circuit. Explain SR flip flop with the excitation table.			L1 L2			
9. 10.	What is ROM? Explain Types of ROMs. Write the comparison between RAM and ROM.			CO5	L1 L2			
Ans	Section B (Essay Questions) Answer all questions, each question carries equal marks.				$(5 \times 10M = 50 M)$			
11.	A)	Convert the following number systems. i) (1011101.0101) ₂ to Octal number ii) (CB289.36) ₁₆ to Decimal number iii) (54) ₆ to Binary number iv) (275) ₈ to Hexadecimal number v) (4310) ₅ to Decimal number	10M	CO1	L3			
	D)	OR	<i>5</i> 3. <i>6</i>	001	T 2			
	B)	i) What is a Hamming code and encode data bits 10110 into a 8-bit odd parity Hamming code.ii) Explain about Weighted and Non-weighted codes.	5M 5M	CO1	L3			
12.	A)	Minimize the following Boolean expressions using K-Map i) $f1 = \Sigma m$ (5, 7, 8, 10, 13, 15) + d (0, 1, 2, 3) ii) $f2 = \Pi M$ (1, 2, 6, 7, 8, 13, 14, 15).	10M	CO2	L3			
	B)	OR Implement a 5-to-32-line decoder with four 3-to-8-line decoders with enable and a 2-to- 4-line decoder.	10M	CO2	L3			
13.	A)	Design and implement full subtractor by using only NAND gates. Explain its operation with the help of truth table? OR	10M	CO3	L3			
	B)	Design the full adder circuit using decoder and de-multiplexer.	10M	CO3	L3			

14,	A)	What is difference between latch and flip flop? Explain about clocked JK flip flop using NAND gates.	10M	CO4	L2			
OR								
	B)	Design a synchronous BCD counter with JK flip-flop.	10M	CO4	L3			
15.	A)	Design a combinational circuit using ROM that accepts a 3-bit binary number and generates output equal to the square of the input number. Use decoder of suitable size to implement ROM.	10M	CO5	L3			
OR								
	B)	Discuss on the concepts and applications of ROM, PROM and EPROM.	10 M	CO5	L2			