ANURAG Engineering College

(An Autonomous Institution)

II B.Tech. I Semester Supplementary Examinations, June/July – 2024 DIGITAL LOGIC DESIGN

(COMPUTER SCIENCE AND ENGINEERING)

Time: 3 Hours Section – A (Short Answer type questions)		Max. Marks: 75 (25 Marks)		
		Outcome	Level	
1.	Convert 1234 Base 8 to Base 2 (binary)	CO1	L1	2M
2.	Explain the representation of single precision and double precision	CO1	L3	3M
	floating point?			
3.	What is the need for don't cares in K maps?	CO2	L4	2M
4.	Explain the canonical and standard forms?	CO2	L3	3M
5.	What is a combinational circuit?	CO3	L2	2M
6.	Explain about 4-bit binary parallel adder.	CO3	L1	3M
7.	How many bits we can store using a flip flop?	CO4	L1	2M
8.	Explain about ripple counter?	CO4	L3	3M
9.		CO5	L3	2M
10.	List out the difference Associative and Auxiliary memory	CO5	L2	3M
	Section B (Essay Questions)			
Answa	r all questions, each question carries equal marks.	(5.3	X 10M =	= 50M)
	i) Apply 2's complement subtraction for the binary numbers	CO1	L2	- 30WI)
11. A)	101100 – 110110.	COI	LZ	
	ii) Explain about even parity and odd parity?			
	OR			
B)	Demonstrate about the error correction and error detection	CO1	L3	10 M
D)	capabilities of hamming code with an example.	COI	LJ	10171
	capabilities of naniming code with all example.			
12. A)	Minimize the following boolean function using K-map	CO2	L2	10M
	$F(A, B, C, D) = \Sigma m(0, 1, 2, 5, 7, 8, 9, 10, 13, 15)$	002	132	10111
	OR			
B)	Analyze 4*16 decoder with 2*4 decoders.	CO2	L3	10M
2)	Timily 20 1 To decoder with 2 1 decoders.	002	113	10111
13. A)	Construct and analyze half adder and full adder operations with	CO3	L2	10M
	neat diagram.			
	OR			
B)	Sketch the k-map for BCD to GRAY CODE and design the	CO3	L3	10M
	logic diagram.			
14. A)	Examine the working principle of JK & T flip-flops truth	CO4	L2	10M
	tables.			
	OR			
B)	Design a synchronous counter for the sequence: $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow$	CO4	L2	10M
	$4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 0$, using J-K flip-flop.			
15 4)	Design of 512×9 DAM using 129×9 DAM	COF	тэ	1014
15. A)	Design of 512×8 RAM using 128×8 RAM.	CO5	L3	10M
B)	OR Explain the cache memory and its design issues.	CO5	L3	10M
20,		003		TOTAT