ANURAG Engineering College

(An Autonomous Institution)

II B.Tech. I Semester Supplementary Examinations, June/July – 2024
DISCRETE MATHEMATICAL STRUCTURES
(COMPUTER SCIENCE AND ENGINEERING)

	-	
Time: 3 Hours		Max. Marks: 75

	Section – A (Short Answer type questions)		(25	Marks)
Answer All Questions			B.T Level	Marks
1.	Let $A = \{1, 2\}$, $B = \{x, y, z\}$ and $C = \{3, 4\}$ then find $A \times B \times C$	CO1	L1	3M
2.	Show that $A - (A - B) = A \cap B$	CO1	L2	2M
3.	Suppose that the license plate of a certain state requires 3 English letters followed by 4 digits. How many plates are possible if only the letters can be repeated?	CO2	L2	2M
4.	Find the value of n if $2(np_2) + 50 = 2np_2$	CO2	L1	3M
5.	What is a homogeneous recurrence relations	CO3	L1	2M
6.	Use substitution method to solve $a_n = a_{n-1} + 3n^2 + 3n + 1$ where $a_0 = 1$	CO3	L2	3M
7. 8. 9. 10.	Define a Group and explain with an example. Define Lattice and write its properties. What is Chromatic number? Define Euler Circuit. Give an example	CO4 CO4 CO5 CO5	L1 L1 L1 L1	2M 3M 2M 3M
A	Section B (Essay Questions)	(5)	X 10M =	- 50M)
11. A)	r all questions, each question carries equal marks. Construct the Truth Table for the following $\neg (p \lor (q \land r)) \Leftrightarrow ((p \lor q) \land (p \lor r))$ OR	CO1	L3	10M
B)	Show that $\{[p \to (q \lor r)] \land \neg q\} \to (p \to r)$ is a Tautology.	CO1	L2	10M
12. A)	There are four bus routes between the places A and B and 3 bus routes between the places B and C. Find the number of ways of a person can make a round trip from A to A via B if he does not use a route more than once.	CO2	L2	10M
В)	OR How many ways are there to arrange the nine letters of the word MISSISSIPPI taken all together?	CO2	L3	10M
13. A)	Find a general expression for a solution to the recurrence relation $a_n - 5a_{n-1} + 6a_{n-2} = n(n-1)$, for $n \ge 3$	CO3	L2	10M
B)	Solve the recurrence relation $a_n - 7a_{n-1} + 6a_{n-2} - 12a_{n-3} = 0$, $n \ge 0$	CO3	L3	10M

- 14. A) The set $A = \{1, \omega, \omega^2\}$ where 1, ω , ω^2 are cube roots of unity and CO4 L3 10M $\omega^3 = 1$ forms a group with respect to multiplication composition.
 - B) Define Adjacency Matrix. Let $A = \{a, b, c, d, e\}$ and let CO4 L4 10M $R = \{(a, a), (a, b), (b, c), (c, d), (c, e), (d, e)\}$. Compute the transitive closure of R using Adjacency Matrix technique.
- 15. A) Verify the Isomorphism of the following graphs CO5 L3 10M

B) State and prove Euler formula CO5 L3 10M