ANURAG Engineering College (An Autonomous Institution) II B.Tech I Semester Supplementary Examinations, June/July-2024 PROBABILITY THEORY & STOCHASTIC PROCESSES (ELECTRONICS AND COMMUNICATION ENGINEERING) | Time: | 3 Hours | | x. Mar | ks: 75 | |--|--|-------------------|---------------------|-----------------| | Section – A (Short Answer type questions) Answer All Questions | | Course
Outcome | (25
B.T
Level | Marks)
Marks | | 1. | One card is drawn from a regular deck of 52 cards. What is the | CO1 | L1 | 2M | | 2. | probability of the card being either red or a king? Write probability axioms and define probability as a relative frequency. | CO1 | L1 | 3M | | 3. | State and prove any two properties of variance of random variable. | CO2 | L2 | 2M | | 4. | Explain the characteristic function of a random variable X. | CO2 | L1 | 3M | | 5. | Explain about the "Joint Central Moments". | CO3 | L1 | 2M | | 6. | If X &Y are statistically independent random variables and W=X+Y, then find PDF of W. | CO3 | L1 | 3M | | 7. | Explain the concept of stationary random process. | CO4 | L2 | 2M | | 8. | State and prove any three properties of auto correlation function. | CO4 | L1 | 3M | | 9. | If the Autocorrelation function of a random process is $R_{XX}(\tau) = Ke^{-K \tau }$. Find the power density spectrum? | CO5 | L1 | 2M | | 10. | What is the Trade-off between bandwidth and SNR? | CO5 | L2 | 3M | | | Section B (Essay Questions) | | | | | Answer all questions, each question carries equal marks. | | (5.2 | X 10M : | = 50M) | | 11. A) | A missile can be accidentally launched if two relays A and B both have failed. The probabilities of A and B failing are known to be 0.01 and 0.03, respectively. It is also known that B is more likely to fail (probability 0.06) if A has failed. i) What is the probability of an accidental missile launch? ii) What is the probability that A will fail if B has failed? Are the Events 'A' fails and 'B' fails statistically independent? OR | CO1 | L3 | 10M | | В) | i) State and Prove that Conditional Probability and Total Probability. ii) A fair coin is tossed 4 times. Write the sample space and find the probability of the event that a) Number of heads is more than the number of Tails b) Tails occur in the second and fourth tosses of the coin. | CO1 | L3 | 6M
4M | | 12. A) | Distinguish between Probability Distribution and Probability Density functions and their properties. OR | CO2 | L3 | 10M | | B) | the state of s | CO2 | L3 | 10M | | | Find: a) Mean value E[X], b) Second order moment E[X ²] and c) Variance σ_X^2 | | | | | 13. A) | i) Write short notes on "Jointly Gaussian Random variables".ii) Write short notes on "Point conditioning" and "Interval conditioning". | CO3 | L3 | 5M
5M | |--------|--|-----|----|----------| | B) | OR A Joint density is given by | CO3 | L3 | 10M | | | $f_{XY}(x,y) = \begin{cases} \frac{2}{43}(x+0.5y)^2, & 0 < x < 2 \text{ and } 0 < y < 3 \\ 0, & \text{otherwise} \end{cases}$ i) Find all the first and second order moment ii) Find the Covariance. | | | | | 14. A) | Two random processes $X(t)$ and $Y(t)$ be defined by $X(t) = A\cos\omega t + B\sin\omega t$ and $Y(t) = B\cos\omega t - A\sin\omega t$, where A & B are two random variables and ω is a constant. Find the cross-correlation function and show that $X(t)$ and $Y(t)$ are jointly WSS. | CO4 | L3 | 10M | | B) | i) Explain the following with respect to Random process. | CO4 | L3 | 5M | | | a) Time average & b) Ergodic ii) Auto correlation function of a random process X (t) is given as $R_{XX}(\tau) = 25 + \frac{4}{1+6\tau}$. Find mean, mean square, variance of random process. | | | 5M | | 15. A) | State and prove that power density spectrum and their properties. OR | CO5 | L3 | 10M | | B) | i) Derive the average noise figure of cascaded amplifier networks. ii) Explain the following terms a) Effective Noise temperature b) Thermal Noise. | CO5 | L3 | 5M
5M |