ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, June/July-2024 SIGNALS AND SYSTEMS

(ELECTRONICS AND COMMUNICATION ENGINEERING)

Time:	(ELECTRONICS AND COMMUNICATION ENGINEERING) Time: 3 Hours Max. Marks: 75					
Section – A (Short Answer type questions) Answer All Questions		Course Outcome	B.T	Marks) Marks		
1.	Define and sketch the following elementary signals	CO1	Level L1	2M		
1.	i) Unit impulse signal ii) Signum Function	COI	LI	2111		
2.	Explain the dirichlet's conditions?	CO1	L1	3M		
3.	Find the Fourier transform of Eternal Exponential Signal	CO2	L1	2M		
4.	Compare Various Sampling Types?	CO2	L1	3M		
5.	Classify the Systems	CO3	L1	2M		
6.	Define the terms:	CO3	L1	3M		
	i) Signal Bandwidth ii) System Bandwidth					
7.	Define Parsvel's theorem	CO4	L1	2M		
8.	Explain the Graphical representation of Convolution with Examples	CO4	L1	3M		
9.	Define One sided & Two Sided Laplace Transforms.	CO5	L1	2M		
10.	Find x (0) if X (z) is given by	CO5	L1	3M		
201				0.112		
	$X(z) = \frac{z^2 + 2z + 2}{(z+1)(z+0.5)}$ (ii) $X(z) = \frac{z+3}{(z+1)(z+2)}$					
	Section B (Essay Questions)					
Answer all questions, each question carries equal marks.		(5.3	X 10M =	= 50M)		
11. A)	Explain the concept of signal estimation using orthogonal function and find mean square error?	CO1	L3	10M		
	OR					
B)	Compute the Exponential Fourier series for the full wave rectified sine wave	CO1	L3	10M		
	$v(t) = V_m \sin\left(\frac{\pi}{T}\right) t for \ 0 \le t \le T$					
	were a second					
12. A)	Compute the Fourier transform of symmetrical triangular pulse from t = -1 to 1 with amplitude 1 and sketch the Spectrum. OR	CO2	L3	10M		
B)	Demonstrate and prove the Sampling theorem for Band limited signals with graphical interpretation.	CO2	L3	10M		
13. A)	Check whether the following systems are linear, time invariant, causal and stable are not. i) $y(n)=x(n^2)$ ii) $y(n)=e^{x(n)}$	CO3	L3	10M		
В)	OR The input voltage to the RC circuit is $x(t)=e^{(-t/RC)}u(t)$ and impulse response is $h(t)=(1/RC) e^{(-t/RC)}u(t)$, find the response of the system	CO3	L3	10M		

14. A)	Show that auto correlation and PSD form Fourier transform pair. OR	CO4	L3	10M
B)	 i) Derive the relationship between convolution and correlation ii) Explain the relation between ACF and power spectral density function 	CO4	L3	5M 5M
15. A)	i) Distinguish between Fourier, Laplace and Z-transform ii) Compute the Inverse Laplace transform of $X(s) = \frac{1}{(s+4)(s-2)}$ if the ROC is ROC: Re(s)<-4	CO5	L3	3M 7M
	OR			
B)	Compute the Z- Transform and ROC of the Sequences (i) $x(n) = \{2,1,-3,2,5,7\}$ (ii) $x(n) = a^{-n} u(-n)$	CO5	L3	10M