ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, Jan/Feb-2024 SWITCHING THEORY AND LOGIC DESIGN (ELECTRONICS AND COMMUNICATION ENGINEERING)

Time: 3 Hours Max. Marks: 75

Time. 5	110013	1714	A. IVIAII	
	section – A (Short Answer type questions)	Course	•	Marks)
Answe	r All Questions	Course	B.T	Marks
_		Outcome	Level	03.6
1.	What is the binary & octal number system?	CO1	L1	2M
2.	Realize two input OR gates using input NAND gates?	CO1	L2	3M
3.	What are Minterm and Maxterm?	CO2	L1	2M
4.	Locate the minters in a three variable map for $f=\sum m(0,1,5,7)$	CO2	L2	3M
5.	What do you mean by triggering? List the various triggering modes with examples.	CO3	L1	2M
6.	Differentiate between Latch and Flip-flop?	CO3	L2	3M
7.	Compare synchronous & Asynchronous circuits	CO4	L1	2M
8.	Convert RS flip-flop to D flip-flop	CO4	L2	3M
9.	Draw the diagram of Mealy type FSM for serial adder.	CO5	L1	2M
10.	Draw the circuit for Moore type FSM.	CO5	L2	3M
10,	Diaw the enealt for whoole type I bivi.	003	22	2111
	Section B (Essay Questions)			
Answei	all questions, each question carries equal marks.	(5	X 10M	=50M)
11. A)		CO1	L2	10M
11.11)	F = ABC + BCD + ABC and realize using NAND gates only	001		10111
	OR			
B)	Briefly discuss about the Hamming code with suitable example. The	CO1	L3	10M
Б)	<u> </u>	COI	LJ	TOIVI
	message below has been coded in the 7-bit Hamming code and			
	transmitted through noisy channel. Decode the message assuming			
	that at most a single error has occurred in each code word 1101110			
	and 1011011.Asumme even parity bit.			
12. A)	Design BCD to Grey code converter with an example?	CO2	L3	10M
12(11)	OR			
B)	Reduce using mapping the following expression and implement the	CO2	L3	10M
2)	real minimal expression in universal gates.			
	F(A, B,C,D)= $\sum m(0,2,4,6,7,8,10,12,13,15)$			
	$\Gamma(\mathbf{A}, \mathbf{D}, \mathbf{C}, \mathbf{D}) = \sum_{i} \Pi(0, 2, 7, 0, 7, 0, 10, 12, 13, 13)$			
13. A)	Draw the logic diagram of a SR latch using NOR/NAND gates.	CO3	L2	10M
	Explain its operation using excitation table.			
	OR			
B)	Utilize fundamentals of sequential machine operation with	CO3	L3	10M
Б)	* *	CO3	LJ	TOTAL
	example?			
1/ //	Design a synchronous modulo-12 counter using NAND gates and JK	CO4	L3	10M
14. A)		CO4	LJ	TOTAT
	flip flops			
	OR	004	т о	103.5
B)	Design a 4-bit ripple counter with the help of state diagrams?	CO4	L2	10M

15. A) For the state table of the machine given below. Find the equivalent partition and a corresponding reduced machine in standard form.

CO5 L3 10M

Present State	Next State Z		
	x=0	x=1	
A	D,0	H,1	
В	F,1	C,1	
С	D,0	F,1	
D	C,0	E,1	
Е	C,1	D,1	

OR

B) Draw and explain clearly about weighing machine with a neat flow CO5 L3 10M chart.