ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, June/July - 2024

CONTROL SYSTEMS

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 Hours

Max.Marks:75

Section – A (Short Answer type questions)			(25 Marks)		
Answer All Questions		Course	B.T	Marks	
		Outcome	Level		
1.	Explain a comparison between open loop and closed loop control	CO1	L2	2M	
	systems.				
2.	Describe Mason's Gain formula.	CO1	L1	3M	
3.	Summarize the time domain specifications.	CO2	L2	2M	
4.	Define steady state error.	CO2	L1	3M	
5.	Discuss Routh stability criterion.	CO3	L2	2M	
6.	Define Gain margin and Phase margin	CO3	L1	3M	
7.	State and explain Nyquist stability criterion.	CO4	L2	2M	
8.	When lag/lead/ lag-lead compensation is employed?	CO4	L1	3M	
9.	Write the state model of nth order system?	CO5	L1	2M	
10.	Describe the properties of State transition matrix?	CO5	L1	3M	
	Section B (Essay Questions)				
Answer all questions, each question carries equal marks.			$(5 \times 10M = 50M)$		
11. A)	Using Block diagram reduction technique, obtain the transfer	CO1	L3	10M	

function for the system shown in the figure. 1 / G₁ 1 / G₄ C(s) R(s) G_4 H_1 H_2 **OR**

- B) For the given mechanical system, write down
 - (i) Mathematical model
 - (ii) Obtain the transfer function X1(s)/F(s) and X2(s)/F(s)

Examine response of under damped second order system for unit step input signal

CO₂

CO₁

L3

L3

10M

10M

OR

B) Consider the unity feedback system where the forward transfer function is G(S) = 25/s(s+5). Analyze delay time; rise time, peak time, peak overshoot and settling time.

CO₂

L3 10M

13. A)	A unity feedback control system has an open loop transfer function G(S)=K / S (S+2) (S+4). Outline the Root locus. OR	CO3	L3	10M		
B)	Sketch the bode plot for the given system whose $H(s) = 1$, and Obtain gain cross over frequency $G(S)=20/S(1+3S)(1+4S)$	CO3	L3	10M		
14. A)	Draw the Nyquest plot for the system whose open loop transfer function is $G(S)=K/S$ (S+2) (S+10). Determine the range of K for which open loop system is stable	CO4	L3	10M		
OR						
B)	Explain lag-compensator?	CO4	L3	10M		
15. A)	Demonstrate the transfer function from state model. And the state space representation of a system is given below $ \dot{X} \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U Y = \begin{bmatrix} 0 & 1 \end{bmatrix} $	CO5	L3	10M		
OR						
В)	Explain solution of state equation. And obtain state transition matrix for the system $ \dot{x} = \begin{bmatrix} -3 & 1 \\ 0 & -1 \end{bmatrix} x $	CO5	L3	10M		