ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, Jan/Feb-2024 **ELECTRICAL CIRCUIT ANALYSIS**

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 Hours Max. Marks: 75

Section – A (Short Answer type questions)			(25 Marks)		
Answer All Questions		Course	B.T	Marks	
		Outcome	Level		
1.	State Millman's theorem.	CO1	L2	2M	
2.	Define (i) Form Factor (ii) Peak Factor	CO1	L2	3M	
3.	What is the steady state response?	CO2	L1	2M	
4.	Define the Time Constant.	CO2	L2	3M	
5.	Define Locus diagram	CO3	L2	2M	
6.	Write the relation between resonant frequency, bandwidth and quality factor?	CO3	L1	3M	
7.	Write the conditions for reciprocity for Z and ABCD parameters.	CO4	L1	2M	
8.	Draw constant-k low pass filter (prototype).	CO4	L2	3M	
9.	Define i) Tree ii) Co-Tree	CO5	L2	2M	
10.	Write the relationship between line and phase quantities in a 3-	CO5	L1	3M	
	phase delta balanced connected system.				
Section B (Essay Questions)					
Answer all questions, each question carries equal marks.			$(5 \times 10M = 50M)$		

Answer all questions, each question carries equal marks.

11. A) Find i₀ by using the nodal analysis.

OR

B) i) Find the load R_L that will result in maximum power delivered to the load given below figure Also determine the maximum power Pmax.

- ii) Derive the expression for Average value and RMS value for sinusoidal wave form.
- 12. A) Derive the expression for transient response of RC Circuit excited by Sinusoidal Voltage Source.

CO₁

CO1

CO₁

L3

L3

10M

5M

L3

5M

CO₂ L3 10M

L3

10M

Question Paper Code: R18A21EE03

B) A series RL circuit with R = 30Ω and L=15H has a constant voltage V=60v applied at t=0 as shown in below in figure. Determine the current i, the voltage across resistor and the voltage across the inductor.

Construct the Locus diagram for series R-C circuit with constant R and variable X_L?

CO₃

CO₃

CO₂

L3 10M

OR

B) A series resonant circuit contains a 10Ω resistor, 20 mH inductance anda 2µF capacitance. Determine i) Resonance Frequency

L3 10M

- ii) Cut off frequencies
- iii) Band Width
- iv) Quality Factor.

CO₄

6M

14. A) i) The Z parameters of a two-port network are $Z_{11}=6\Omega$, $Z_{22}=4\Omega$, $Z_{12}=Z_{21}=3\Omega$. Compute h and ABCD Parameters and write the describing equations.

CO₄

L3 4M

L3

ii) Find the relationship between Transmission Parameters & Admittance Parameters.

OR

B) i) Obtain Y Parameters for the network shown in below figure.

CO₄

L3 5_M

ii) Construct the circuit diagram of a Band Pass Filter. Explain the design procedure of the Band Pass Filter in detail.

CO₄

5M

L3

15. A) Determine the basic cut-set schedule for the oriented graph shown in figure below by selecting 2, 4 and 5 branches as Tree?

CO₅

L3 10M

OR

B) i) Derive the relationship between line and phase quantities in a 3phase balanced star connected system.

current is 10 A. Find the a) total active power b) reactive power.

CO₅

L3

ii) A balanced delta-connected load of (2 + j3) W per phase is connected to a balanced three-phase 440 V supply. The phase

5M