## **ANURAG Engineering College**

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, June/July - 2024 NUMERICAL METHODS & PARTIAL DIFFERENTIAL EQUATIONS (MECHANICAL ENGINEERING)

| Time: 3 Hours                             |                                                                                                                | Max.Marks:75 |                   |              |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------|-------------------|--------------|
| Section – A (Short Answer type questions) |                                                                                                                |              | (25 Marks)        |              |
| Answer All Questions                      |                                                                                                                | Marks        | Course<br>Outcome | B.T<br>Level |
| 1.<br>2.                                  | Briefly Explain Bisection Method<br>Define forward difference, backward difference and divided difference      | 2M<br>3M     | CO1<br>CO1        | L1<br>L2     |
| 3.<br>4.                                  | Write the Newton's cotes quadrature formulae Find the Trapezoidal rule from Newton's cotes quadrature formulae | 2M<br>3M     | CO2<br>CO2        | L1<br>L2     |
| 5.<br>6.                                  | Briefly explain Euler's Method<br>Write mathematical steps in Runge Kutta method                               | 2M<br>3M     | CO3<br>CO3        | L1<br>L2     |
| 7.<br>8.                                  | Write the mathematical steps to solve Lagrange's Linear equation Write the Charpit's auxiliary equations       | 2M<br>3M     | CO4<br>CO4        | L1<br>L2     |
| 9.                                        | Explain Method of separation of variables with an example                                                      | 2M           | CO5               | L1           |
| 10.                                       | Write procedural steps to classification of second order partial differential equations                        | 3M           | CO5               | L2           |
| Answe                                     | Section B (Essay Questions) r all questions, each question carries equal marks. (5 x 1                         | 10M = 50     | 0 <b>M</b> )      |              |
| 11.A)                                     | Evaluate $\sqrt{12}$ to four decimal places by Newton's Iterative method                                       | 10M          | CO1               | L3           |
|                                           | OR                                                                                                             |              |                   |              |
| B)                                        | Find a root of the equation $x^3 - x - 1 = 0$ using bisection method to four decimal places                    | 10M          | CO1               | L3           |
| 12.A)                                     | Compute $\frac{dy}{dx}$ at x = 1.5 given the table<br>x: 0 1 2 3 4 5<br>y: 1 2 5 7 14 26                       | 10M          | CO2               | L3           |
| B)                                        | OR Evaluate $\int_0^6 \frac{1}{1+x^2} dx$ by Simpson's 1/3 rd rule                                             | 10M          | CO2               | L3           |

- 13. Using Euler's method, find approximate value of y when

  A) x = 1.0 of  $\frac{dy}{dx} = 1 2xy$ , y(0) = 0 with h = 0.2
  - OR
- B) Using Runge-Kutta method of fourth order, solve  $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2} \text{ with } y(0) = 1 \text{ at } x = 0.1, 0.2$
- 14. A) Form the partial differential equation from  $z = f\left[\frac{xy}{z}\right]$  by eliminating the 10M CO4 L3 Arbitrary function 'f'.
- B) Find the complete integral of the partial differential and a complete integral of the partial differential equation  $p^2q^2(px + qy z) = 2$
- 15. Determine the solution of the one-dimensional heat equation 10M CO5 L3

  A)  $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$  with the boundary conditions u(0, t) = u(l, t) = 0 for t > 0 and u(x, 0) = x where 'l' is the length of the rod.
  - B) A tightly stretched flexible string has its ends fixed at x = 0 and x = l. At time t = 0, the string is given a shape defined  $f(x) = \mu x(l x)$ , where  $\mu$  is a constant, and then released. Find the displacement of any point x of the string at any time t