ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, Jan/Feb-2024 NUMERICAL METHODS & PARTIAL DIFFERENTIAL EQUATIONS (MECHANICAL ENGINEERING)

	(
Time: 3 Hours		Max. Marks: 75

Section – A (Short Answer type questions)			(25 Marks)		
Answer All Questions			B.T Level	Marks	
1.	Establish the relationships between: Δ , ∇ and δ .	CO1	L1	2M	
2.	Explain the Regula-Falsi method geometrically.	CO1	L2	3M	
3.	Write first and second order derivate formulae using backward difference interpolation.	CO2	L1	2M	
4.	Discuss Newton's cotes quadrature formulae.	CO2	L2	3M	
5.	Given $\frac{dy}{dx} = 2e^{x}y$, $y(0) = 0$. Estimate $y(1)$ using Euler's formula.	CO3	L1	2M	
6.	Using Taylor series method, find $y(0.2)$ with $h = 0.2$ given $\frac{dy}{dx} = x^2 - y$, $y(0) = 1$.	CO3	L2	3M	
7.	Form a PDE by eliminating the arbitrary constants a and b from $(x-a)^2 + (y-b)^2 + z^2 = 1$.	CO4	L1	2M	
8.	Classify the type of first order partial differential equations with counter examples.	CO4	L2	3M	
9.	What is the nature of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} - 2x^2 \frac{\partial^2 u}{\partial x \partial z} + \frac{\partial^2 u}{\partial z^2} = 0$ for $ x < 1$.	CO5	L1	2M	
10.	Using the method of separation of variables, find solution of $x^2 \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.	CO5	L2	3M	

Section B (Essay Questions)

Answer all questions, each question carries equal marks.

(5 X 10M = 50M)

10M

10M

L3

L3

CO1

CO₁

- 11. Using Newton-Raphson method,
- A) i) Derive an iterative scheme to compute $\sqrt[k]{N}$, where k and N are positive numbers.
 - ii) Specify the condition for convergence of this scheme.
 - iii) Use this iterative scheme to evaluate $\sqrt[3]{48}$ correct to three decimal places.

OR

B) From the following data, estimate the number of students who obtained marks between 40 and 45.

Marks	0 - 40	40 - 50	50 - 60	60 - 70	70 - 80
No. of Students	31	42	51	35	31

Page 1 of 2

12. A)	From the following table of values of x and y, determine $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$	CO2	L3	10M
	for $x = 15$ and $x = 25$ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
B)	A river is 80 feet wide. The depth d in feet at a distance x foot from one bank is given by: x 0 10 20 30 40 50 60 70 80 d 0 4 7 9 12 15 14 8 3 Find approximately the area of cross section of the river using i) Trapezoidal rule, ii) Simpson's rule, and iii) provide your comments on the obtained results by both the methods.	CO2	L3	10M
13. A)	Solve $\frac{dy}{dx} = x^2 - y$, $y(0) = 1$ by Picard's method of successive approximations to get the value of y at $x = 1$. Use terms through x^5 ,	CO3	L3	10M
B)	OR Use Runge-Kutta 4th order method to solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, $y(0) = 1$ for the interval $0 < x \le 0.4$ with $h = 0.1$.	CO3	L3	10M
14. A)	Find the integrals of the $(z^2 - 2yz - y^2) p + (xy + xz) q = xy - xz$.	CO4	L3	10M
B)	Solve $z^2(x^2p^2+q^2)=1$ using suitable method.	CO4	L3	10M
15. A)	The points of trisection of string are pulled aside through the same distance on opposite sides of the position of equilibrium and the string is released from the rest. Derive an expression for the displacement of the string at subsequent time and show that the mid-point of the string always remains at rest.	CO5	L3	10M
B)	OR An insulated rod of length π has its ends at A(x = 0) and B (x = π) maintained at 0° C and 100° C respectively, until steady state conditions prevail. If the end B is suddenly reduced to 0° C and maintained at 0° C, find the temperature $u(x,t)$ at any time t when $c^2 = 1$.	CO5	L3	10M