ANURAG Engineering College

(An Autonomous Institution)

II B.Tech II Semester Supplementary Examinations, Jan/Feb-2024 FORMAL LANGUAGES AND AUTOMATA THEORY (COMPUTER SCIENCE AND ENGINEERING)

Time: 3 Hours Max.Marks:75

Time: 3 Hours	me: 3 Hours Max.Marks:		s:75	_
Section – A (Short Answer t Answer All Questions	ype questions)	Course	(25 B.T	Marks) Marks
Answer An Questions		Outcome	Level	
1. Define finite automata.		CO1	L1	2M
2. Design a DFA such that $L(M)=\{x x\}$	x is a string of 0 's and 1 's and $ x > 2$.	CO1	L2	3M
3. Define mealy machine with examp			L1	2M
¥			L2	3M
<u> </u>			L1	2M
			L2	3M
			L1	2M
8. Define context sensitive grammar v			L2	3M
9. Define turing machine.			L1	2M
<u> </u>	bbaaa) and N = (a, ba, bab) have a Post	CO5 CO5	L2	3M
	ction B (Essay Questions)			
Answer all questions, each question carries equal marks.		•		= 50M)
11. Convert the following NFA with ε	to NFA without ε.	CO1	L3	10M
B) Convert the following NFA to DFA	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CO1	L3	10M
12. State pumping lemma for regular laA) 0} is not regular.[3+7].	anguages. Prove that $L = \{1^n0^n \mid n \ge 0\}$	CO2	L3	10M
B) Convert the given finite as	atomata to regular expression.	CO2	L3	10M
convert the given initie at	d d	202	20	7 0111

q1

b

13. A)	i) Define left recursive grammar and right recursive grammar. ii) Construct a derivation tree for the string aabbabba for the CFG given by, $S \rightarrow aB \mid bA$ $A \rightarrow a \mid aS \mid bAA$ $B \rightarrow b \mid bS \mid aBB$	CO3	L3	3M 7M			
	OR						
B)	 i) Define sentential form. ii) Convert the given below CFG to CNF. S → a aA B A → aBB ε B → Aa b 	CO3	L3	3M 7M			
14. A)	Construct a PDA from the following CFG. $G = (\{S, X\}, \{a, b\}, P, S)$ where the productions are $ S \to XS \mid \epsilon$, $A \to aXb \mid Ab \mid ab$	CO4	L3	10M			
D)		CO4	τ 2	101/4			
B)	Design a PDA for the following language L={ $0^n1^{2n} / n \ge 1$ }.	CO4	L3	10M			
15. A)	Design a turing machine for subtraction of two numbers.	CO5	L3	10M			
OR							
B)	Explain about turing machine halting problem.	CO5	L3	10M			