ANURAG Engineering College

(An Autonomous Institution)

II B.Tech II Semester Supplementary Examinations, Jan/Feb-2024 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES (ELECTRONICS AND COMMUNICATION ENGINEERING)

Time: 3 Hours		Max. Marks: 75		
Section – A (Short Answer type questions)			(25 Marks)	
Answer All Questions		Course	B.T	Marks
		Outcome	Level	
1.	Derive the relationship between E and V.	CO1	L1	2M
2.	State the Gauss's Law and List the Applications of Gauss Law.	CO1	L2	3M
3.	List the applications of amperes circuit law.	CO2	L1	2M
4.	Define Inductance? What is the energy stored in an inductor.	CO2	L2	3M
5.	What is displacement current density.	CO3	L1	2M
6.	Derive the induced emf using faraday's law.	CO3	L2	3M
7.	What is uniform plane wave?	CO4	L1	2M
8.	Define Surface impedance?	CO4	L2	3M
9.	Define transmission line? What are the different types of	CO5	L1	2M
	transmission lines?			
10.	What are the different types of distortions in a transmission line and What's the condition for distortion less transmission?	CO5	L2	3M
	Section B (Essay Questions)			
• • • • • • • • • • • • • • • • • • • •				
	r all questions, each question carries equal marks.	•		,
11. A)	State and explain Coulomb's law. Obtain an expression in vector	CO1	L3	10M
	form.			
-	OR	GO4	T 0	4.03.5
B)	Define electric field strength and derive an expression for electric	CO1	L3	10 M
	field intensity due to infinite line charge located along z-axis from			
	$-\infty$ to ∞ .			
10 4)	Chata and annulain Diet Consut? a land	CO2	т 2	101/4
12. A)	State and explain Biot-Savart's law.	CO2	L3	10M
D)	OR	CO2	т 2	101/4
B)	Derive the boundary conditions between conductor and dielectric?	CO2	L3	10M
12 4)	Describe the inconsistency in Amnero's Levy? Herry it is rectified by	CO3	L3	10M
13. A)	Describe the inconsistency in Ampere's Law? How it is rectified by	COS	L3	10101
	Maxwell? OR			
ת)		CO3	L3	10M
B)	Write Maxwell's equations in different final forms and in word	COS	L3	TOIVI
	Statements.			
14 4)	What is wrifered along versus and obtain versus agreetions for good	CO4	L3	10M
14. A)	What is uniform plane wave and obtain wave equations for good	CO4	L3	TUIVI
	conductors?			
D)		CO4	L3	10M
B)	Define Brewster angle and derive the expression for Brewster angle	CO4	L3	TUIVI
	when a wave is parallel polarized.			
15 A)	Daritya the avaraggion for characteristic immediance	CO5	Т 2	10M
15. A)	Derive the expression for characteristic impedance. OR	CO5	L3	TOM
D/		CO5	T 2	10M
B)	Give details about smith chart and write steps how to calculate	CO3	L3	TOIVI
	impedance, reactance, and wavelength using this chart.			