ANURAG Engineering College

(An Autonomous Institution)

II B.Tech II Semester Supplementary Examinations, June/July – 2024

MATHEMATICS - IV COMMON TO EEE & ECE

Time: 3 Hours Max. Marks: 75

Time: 5 Hours			TVLUA: TVLUT RD: 75		
Section – A (Short Answer type questions) Answer All Questions		Course Outcome	(25 B.T Level	Marks) Marks	
1.	State the necessary and sufficient conditions for a function f(z) to be analytic.	CO1	L1	2M	
2.	Show that the function $f(z) = xy + iy$ is everywhere continuous but is not analytic.	CO1	L2	3M	
3.	Find $\int_0^{1+i} (x^2 - iy) dz$ along the paths y=x	CO2	L1	2M	
4.	State Cauchy's Integral Theorem & Generalized Integral Formula.	CO2	L1	3M	
5.	Find the Taylor's series expansion of $f(z) = \cos z$ at $z = \frac{\pi}{4}$	CO3	L1	2M	
6.	Discuss about Essential Singularity & Removable Singularity.	CO3	L2	3M	
7.	Find the residues of $f(z) = \frac{2z+1}{z^2-z-2}$ at $z=2$	CO4	L1	2M	
8.	What are the values of $\cos \theta$, $\sin \theta$ in terms of z in the given integral	CO4	L1	3M	
0	$\int_0^{2\pi} f(\cos\theta, \sin\theta) d\theta$	CO5	L1	2M	
9. 10.	Find the fixed points of the mapping $w = z + 3i$ Define Bilinear transformation and Three-point formula for Bilinear	CO5	L1	3M	
10.	transformation				
	Section B (Essay Questions)				
Answer all questions, each question carries equal marks.		•	X 10M =	-	
11. A)	Show that the following function is continuous at origin, and the CR	CO1	L2	10M	
	Equations are satisfied at the origin, yet f'(0) does not exist.				
	$f(x, y) = \int \frac{2xy(x+iy)}{x^2+y^2}$; $(x, y) \neq (0, 0)$				
	$f(x, y) = \begin{cases} \frac{2xy(x+iy)}{x^2 + y^2} ; (x, y) \neq (0, 0) \\ 0 ; (x, y) = (0, 0) \end{cases}$ OR				
B)	a) Prove that $f(z) = e^z$ is everywhere analytic.	CO1	L2	5 M	
·	b) Show that function $u = x^3 - 3xy^2$ is harmonic and find the corresponding analytic function.	CO1	L2	5 M	
12. A)	Verify Cauchy's integral theorem for $\int_C z^3 dz$, taken over the boundary of the rectangle with vertices -1,1,1+i,-1+i	CO2	L2	10M	
	OR				
B)		CO2	L3	10M	
ĺ	Find $\int_{C} \frac{z+4}{z^2+2z+5} dz,$				
	(i)C: $ z = 1$ (ii)C: $ z + 1 - i = 2$ (iii)C: $ z + 1 + i = 2$				

13. A) Find Laurent series of
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 CO3 L3 10M if (a) $|z| < 1$, (b) $1 < |z| < 2$ and (c) $|z| > 2$.

OR

B) Find the Taylor's series expansion of $f(z) = \frac{z^2-1}{(z+2)(z+3)}$ at $|z| < 2$. CO3 L3 10M

14. A) a) Find the residues of
$$f(z) = \frac{e^{2z}}{(z-1)^3}$$
 at $z = 1$.

CO4 L2 5 M

b) Prove that $\int_0^{2\pi} \frac{1}{a+b \cos \theta} d\theta = \frac{2\pi}{\sqrt{a^2-b^2}}$, $a > b > 0$

CO4 L3 5 M

OR

B) Using the residue evaluate $\int_0^\infty \frac{x^2}{(x^2+1)(x^2+4)} dx$.

CO4 L3 10M

15. A) Find the bilinear transformation that maps
$$z_1 = -1, z_2 = 0, z_3 = 1$$
 onto $w_1 = -1, w_2 = -i, w_3 = 1,$ respectively. Also find the invariant (fixed points) points.

B) Find the Bilinear transformation which maps z = 1, i, -1 into CO5 L3 10M w = 2, i, -2.