ANURAG Engineering College

(An Autonomous Institution)

III B.Tech II Semester Supplementary Examinations, Dec-2023/Jan-2024 POWER SYSTEM ANALYSIS

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 Hours Max.Marks:75

	Section – A (Short Answer type questions)		(25 Marks)	
Answer All Questions			B.T	Marks
		Outcome	Level	
1.	Define: Oriented graph of a network.	CO1	L1	2M
2.	The partial network has 'm' buses and a reference. A branch is added	CO1	L2	3M
	between a new bus and an existing bus, then what will be the size of			
	$Modified Z_{Bus}$.			
3.	Classify buses with known and unknown parameters.	CO2	L1	2M
4.	Why the load flow studies are important for planning the existing system	CO2	L2	3M
	as well as the future expansion?			
5.	Distinguish between symmetrical and unsymmetrical short circuits.	CO3	L2	2M
6.	How does the short circuit occur in power system and mention two	CO3	L2	3M
	objectives of short circuit analysis.			
7.	What is meant by Steady state stability power limit?	CO4	L1	2M
8.	What is the systems design strategies aimed at lowering system	CO4	L2	3M
	reactance?			
9.	What are the assumptions made in solving swing equation?	CO5	L1	2M
10.	List the types of disturbances that may occur in a single machine infinite	CO5	L1	3M
	bus bar system of the equal area criterion stability			

Section B (Essay Questions)

Answer all questions, each question carries equal marks.

 $(5 \times 10M = 50M)$ CO1 L3 10M

11. The parameters of a 3-bus system are as under, Find the bus admittance

A) matrix using direct inspection method.

Bus Code	Impedance (pu)	Half-line Charging admittance (pu)			
1-2	0.06+j0.18	j0.005			
1-3	0.02+j0.06	j0.006			
2-3	0.04+j0.12	j0.005			

OR

B) Obtain the Bus Impedance Matrix for the network shown in Figure (all CO1 L3 10M impedances are in p.u.) using Z-bus building algorithm.

12. A)	The load flow data for the sample power system is given below (all values are in per unit). The voltage magnitude at bus 2 is to be maintained at 1.04 p.u. The maximum and minimum reactive power limits of the generator at bus 2 are 0.35 and 0.0 p.u. respectively. Determine the voltage solution of the power system at the end of first iteration using Gauss-Seidel method.						CO2	L3	10M
	1–2 0. 1–3 0.	Impedance .08 + j0.24 .02 + j0.06 .06 + j0.18 Assumed voltages 1.06 + j0.0 1.0 + j0.0 1.0 + j0.0	0.0 0.0 0.0 0.0 Gener P 0.0 0.2			oad Q 0 0			
B)	OR					CO2	L3	10M	
13. A)	Write short notes on short circuit current and MVA calculation for symmetrical fault analysis.						CO3	L3	10M
B)	OR A 25 MVA, 13.2 kV alternator with solidly grounded neutral has a subtransient reactance of 0.25 p.u. The negative and zero sequence reactances are 0.35 and 0.1 p.u. respectively. Determine the fault current and the line-to-line voltages at the fault when a double line-to-ground fault occurs at the terminals of an unloaded alternator. Neglect resistance.						CO3	L3	10M
14. A)	Discuss the met system network.	thods of improvi		ate stabil	ity of t	he power	CO4	L3	10M
B)	With the help of studied?	Power-angle cur	OR ve, explain h	ow syste	m stabil	ity can be	CO4	L3	10M
15. A)	Explain about criterion.	determination of		tability 1	asing e	qual area	CO5	L3	10M
B)	Briefly describe	the classical step t	OR by step solution	on of swi	ng equa	tion.	CO5	L3	10M