ANURAG Engineering College

(An Autonomous Institution)

IV B.Tech I Semester Supplementary Examinations, April - 2024

PAVEMENT DESIGN (CIVIL ENGINEERING)

Time: 3 Hours Max. Marks: 75

	Section – A (Short Answer type questions)		•	— Marks)
Answer All Questions		Course	B.T	Marks
1.	Name the two primary types of pavements commonly used in road	Outcome CO1	Level L1	2M
1.	construction.	COI	LI	2111
2.	Explain the functions of the base layer in a pavement system and how	CO1	L2	3M
	they differ from the surface layer.			
3.	Explain the calculation procedure for the stress induced in a flexible	CO2	L1	2M
	pavement using the Visco-Elastic Theory.			
4.	Name the assumptions and key principles of Boussinesq theory and	CO2	L1	3M
_	Burmister theory for analyzing stresses in pavements	000	T 1	0) (
5.	What are the critical locations for stress analysis.	CO3	L1	2M
6.	Explain the influence of frictional stresses on rigid pavements and	CO3	L1	3M
7.	explain their significance in pavement design. Explain the M-E Method to design a flexible pavement for a specific	CO4	L2	2M
/.	road project, considering the traffic load and sub-surface drainage.	CO4		2141
8.	List the benefits of using mechanistic-empirical pavement design	CO4	L1	3M
0.	methods compared to empirical methods, citing specific advantages.			
9.	What is the design criteria checklist for rigid pavements, including	CO5	L1	2M
	factors like joint placement and dowel bar design, as per IRC			
	specifications			
10.	Explain the importance of considering the placement of the first rear	CO5	L2	3M
	axle for determining maximum edge flexural stress in rigid pavements,			
	citing its practical implications.			
	Section B (Essay Questions)	/= 3	57 4 0 B #	#03 #X
	r all questions, each question carries equal marks.	•	X 10M =	-
11. A)	Explain the factors affecting pavement selection for a given road	CO1	L3	10M
	project. Provide a real-world example to illustrate how these factors			
	influence the choice of pavement type and design OR			
B)	Calculate the design repetition for 20 years period for various	CO1	L3	10M
D)	wheel loads equivalent to 22.68kN. Wheel load using the	001	20	
	following data on a four lane road.			
	Load kN 23.48 37.21 41.76 41.82 46.36 49.90 54.43			
	Volume per day 60 35 20 25 10 5 1			
	Colonia por any			
10 1		000	т 2	103.6
12. A)	Based on Burmister's theory, determine required thickness of an	CO2	L3	10 M
	airfield flexible pavement using the following plate load test, Diameter of plate used=85cm; Pressure observed at 1.25mm			
	deflection when the plate load test is conducted on sub grade=0.82			
	kg/cm ² ; Pressure observed at 2.25mm deflection when the plate load			
	test is conducted on base course of 18cm=2.1 kg/cm ² Design wheel			
	load 35000kg, tire pressure = 28 kg/cm ² If allowable deflection is			
	0.125cm.			

	OR			
В)	Compare and contrast the Boussinesq theory and Burmister theory for analyzing stresses in flexible pavements. Assess their assumptions, limitations, and applicability in real-world pavement design scenarios.	CO2	L3	10M
13. A)	Calculate the stresses at interior, edge and corner of a cement concrete pavement by Westergaard's stress equation. Given, Modulus of elasticity of concrete = 3 x 105 kg/cm2, Poisson's ratio of concrete = 0.15, thickness of concrete pavement = 18cm, Modulus of subgrade reaction = 8.5kg/cm2, Wheel load = 5100kg, Radius of loaded area = 15cm	CO3	L3	10M
D)	OR	002	т 2	1014
B)	Evaluate the critical locations of wheel loads on a rigid pavement and the influence of temperature and moisture on stress distribution. Discuss how these factors impact the design of rigid pavements and provide recommendations for optimizing pavement performance.	CO3	L3	10M
14. A)	Describe the empirical methods used in flexible pavement design and their limitations. Provide specific examples of projects where empirical methods were applied and discuss the challenges faced. OR	CO4	L3	10M
B)	Compare and contrast the M-E method and IRC method for flexible pavement design. Analyze the benefits of pavement design based on the M-E method and provide a critical evaluation of the design concepts and criteria in both methods	CO4	L3	10M
15. A)	Discuss the types of rigid pavements and the importance of pavement joints. Evaluate the mechanistic design process for rigid pavements, considering factors like edge flexural stress and tensile stress. OR	CO5	L3	10M
B)	Explain the critical factors considered for the design of rigid pavements. Provide a detailed analysis of dowel bar design and design of tie bars as per IRC:58-2015. Discuss how these design elements contribute to pavement performance and durability.	CO5	L3	10M