ANURAG Engineering College

(An Autonomous Institution)

II B.Tech II Semester Supplementary Examinations, June/July-2024
DESIGN AND ANALYSIS OF ALGORITHMS
(COMPUTER SCIENCE ENGINEERING)

	`	,	
Time: 3 Hours			Max. Marks: 75

THIIC.	3 Hours	TATE	A. IVIAI	M3. / J
Section – A (Short Answer type questions)		Corre	•	Marks)
Answ	er All Questions	Course Outcome	B.T Level	Marks
1.	What are Digicint get?	CO1	Level L1	2M
	What are Disjoint set? If $f(n) = 5n^2 + 4n + 3$ then prove that $f(n)$ is $O(n^2)$	CO1	L1 L2	3M
2.	If $f(n)=5n^2+4n+3$ then prove that $f(n)$ is $O(n^2)$	COI	LZ	SIVI
3.	Define minimum cost spanning tree?	CO2	L1	2M
4.	Differentiate breath first search and depth first search?	CO2	L2	3M
5.	Distinguish greedy method and dynamic programming?	CO3	L1	2M
6.	Define 0/1 knapsack problem?	CO3	L2	3M
7.	State the principle of Backtracking?	CO4	L1	2M
8.	Define the state space tree.	CO4	L2	3M
9.	Define NP-hard problem.	CO5	L1	2M
10.	Draw comparison tree for sorting three elements.	CO5	L2	3M
10.	Draw comparison dee for sorting three elements.	COS	1.2	3101
	Section B (Essay Questions)			
Answ	er all questions, each question carries equal marks.	(5 2	X 10M =	= 50M)
11. A)	Discuss various the asymptotic notation used for best case average case and worst case analysis of algorithms.	CO1	L3	10M
D)	OR	CO1	L3	10M
B)	Explain quick sort algorithm and simulate it for the following data:	CO1	L3	TOIVI
	20,35,10,16,54,21,26,67,75,87			
12. A)	List articulation points from the following graph.	CO2	L3	10M
12.11)	Dist ditiodiction points from the following graph.	002	23	10111
	2 3 7			
	OR			
B)	Compute the optimal solution for job sequencing with deadlines using greedy method. $n=5$, $\{P1, P2, P3, P4, P5\} = \{20, 15, 10, 5, 3\} & \{d1, d2, d3, d4, d5\} = \{2, 2, 1, 3, 3\}.$	CO2	L3	10M
13. A)	Construct OBST for (a1,a2,a3,a4)=(do, if, int, while), p(1:4)=(3,3,1,1)	CO3	L3	10M
,	q(0:4)=(2,3,1,1,1).			
	OR			
В)	Solve the solution for 0/1 knapsack problem using dynamic programming n=3,m=6 profit(p1,p2,p3)=(1,2,5) and weights (w1,w2,w3)=(2,3,4).	CO3	L3	10M

14. A)	Apply the backtracking algorithm to solve the following instances of sum of subset problem S={5,10,12,13,15,18} and d=30.	CO4	L3	10M
B)	Draw the portion of state space tree generated by LCBB for knapsack instance n=4 (p1,p2,p3,p4)=(10, 10, 12, 18), (w1,w2,w3,w4)=(2,4,6,9) and m=15.	CO4	L3	10M
15. A)	Distinguish NP-hard and NP-complete problems. OR	CO5	L3	10M
B)	Explain deterministic and non-deterministic algorithms.	CO5	L3	10 M