ANURAG Engineering College

(An Autonomous Institution)

I B.Tech I Semester Supplementary Examinations, June/July-2024

APPLIED PHYSICS

(COMMON TO CIVIL, EEE, ECE & IT)

	(COMMON TO CIVIL, EEE, ECE & II)			
Time: 3 Hours		Max. Marks: 60		
	Section – A (Short Answer type questions)	(10 2	X 1M =	10M)
Answe	r All Questions	Course	B.T	Marks
		Outcome	Level	
1.	Why are colors observed on a soap bubble?	CO1	L1	1M
2.	What are some examples of polarized light in daily life?	CO1	L1	1 M
3.	List out the differences between matter waves and electromagnetic waves.	CO2	L1	1M
4.	What is the physical significance of wave function?	CO2	L1	1 M
5.	What is electroluminescence explain with example?	CO3	L1	1M
6.	Compare the functioning of a photodiode and a solar cell.	CO3	L2	1M
7.	Why nanoparticles have larger surface area volume ratios than normal size particles?	CO4	L1	1M
8.	What are the types of bottom-up approach in nanotechnology?	CO4	L1	1M
	Why does a two-level laser system not exist? Explain.	CO5	L2	1M
	How does numerical aperture depend on the refractive index of core and cladding?	CO5	L1	1M
	Section B (Essay Questions)			
Answer all questions, each question carries equal marks.		(5 X	10M =	50M)
	i) What are Newton's rings? Explain why the rings get closer and closer when increase in the order of the fringes.	COI	L3	8M
	ii) Apply the Newton's ring method; the diameter of the 5 th dark ring is reduced to half of its value after introducing a liquid below the convex surface. Calculate the refractive index of the liquid. OR			2M
B)	i) Distinguish between Fresnel and Fraunhofer diffraction	CO1	L3	4M
	ii) Explain the working of Nicol's Prism and show how it can be used as polarizer and analyzer.			6M
12. A)	Construct the Schrodinger time-independent wave equation.	CO2	L3	10M
	OR	~~~	~ .	405.7
B)	What do you mean by band gap classify solids on the basis of band gap?	CO2	L3	10M
13. A)	i) Distinguish between direct and indirect band gap semiconductors?	CO3	L3	10M
	ii) An LED is constructed from a pn junction based on a certain semi-conducting material whose energy gap is 1.9 eV. Then solve wavelength of the emitted light? (Given that $h = 6.62607015 \times 10^{-34}$ m ² kg/s, c= 3×10^8 m/s.)			
	OR	000	т о	103.5
В)	Develop the expressions for Hall voltage and Hall coefficient for a semiconductor.	CO3	L3	10M

14. A)	Explain the principle, construction and working of a Scanning Electron Microscope with neat sketch.	CO4	L3	10M
	OR			
B)	What is Chemical Vapour Deposition (CVD)? Explain the principle and construction of CVD process.	CO4	L3	10M
15. A)	Analyze the operation of a four-level Nd: YAG laser system using a neat energy level diagram.	CO5	L3	10M
	OR			
B)	List out the difference between step index and graded index optical fiber?	CO5	L3	10M