ANURAG Engineering College

(An Autonomous Institution)

I B.Tech I Semester Supplementary Examinations, June/July - 2024

MATRICES AND CALCULUS (COMMON TO ALL BRANCHES)

(COMMON TO ALL BRANCHES)					
Time: 3 Hours			Max. Marks: 60		
Section – A (Short Answer type questions)			$(10 \times 1M = 10M)$		
Answer All Questions		Course	B.T	Marks	
		Outcome	Level		
1. 2.	Define singular and non-singular matrices. Write the conditions for Echelon form.	CO1 CO1	L1 L1	1M 1M	
2.					
3.	Prove that if λ is an eigen value of A then $\frac{1}{\lambda}$ is an eigen value of A^{-1}	CO2	L2	1M	
4.	Discuss the different natures of the Quadratic form.	CO2	L2	1 M	
5.	State the Rolle's theorem.	CO3	L1	1M	
6.	Write the relation between Beta and Gamma function.	CO3	L1	1M	
7.	Define Maxima and Minima of two variables.	CO4	L1	1 M	
8.	Whether the Rolle's theorem is applicable to $f(x)$ =tanx in $(0, \pi)$	CO4	L2	1M	
9.	Change the order of integration in $\int_{0}^{1} \int_{x^2}^{2-x} f(x, y) dy dx$	CO5	L2	1M	
10.	Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} dx dy dz$	CO5	L2	1M	
Section B (Essay Questions)					
Answer all questions, each question carries equal marks.			10M =	50M)	
11. A)		CO1	L3	5M	
11.11)		001		5111	
	i) Reduce the matrix to Echelon form and find its rank. 4 2 1 3 .				
	i) Reduce the matrix to Echelon form and find its rank. $\begin{bmatrix} 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{bmatrix}$.				
	[8 43 -1]				
	ii) Solve the system of equations		L3	5M	
	x + 2y + 3z = 9, $4x + 5y + 6z = 24$, $3x + y - 2z = 4$ by Gauss	CO1	LJ	J1 V1	
	elimination method	COI			
	OR				
B)	Show that the only real number λ for which the system	CO1	L3	10M	
2)	$x+2y+3z = \lambda x, 3x+y+2z = \lambda y, 2x+3y+z = \lambda z$ has non-zero	001	220	10111	
	solution is 6 and solve them when $\lambda = 6$.				
	[1 1 1]				
		CO2	L3	10M	
12. A)	Diagonalize the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{bmatrix}$				
,	[-4 4 3]				
	OB				
	OR [3 0 0]				
	3 0 0	CO2	L3	10M	
B)	Verify Cayley-Hamilton Theorem and find A^{-1} for $A = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix}$	JO2		1 0141	
D)	Verify Cayley-Hamilton Theorem and find A^{-1} for $A = \begin{bmatrix} 3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1 \end{bmatrix}$				

Question Paper Code: R22A11HS01

13. A) If
$$a < b$$
 prove that $\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2}$ using Lagrange's CO3 L3 10M mean value theorem. Deduce the following
$$\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}, \frac{5\pi+4}{20} < \tan^{-1}2 < \frac{\pi+2}{4}$$

OR

B) Show that
$$\int_{0}^{1} \frac{x^2}{\sqrt{1-x^4}} dx \cdot \int_{0}^{1} \frac{1}{\sqrt{1-x^4}} dx = \frac{\pi}{4}$$
 CO3 L3 10M

14. A) Show that the functions u = x + y + z, v = xy + yz + zx, $w = x^2 + y^2 + z^2$ CO4 L3 10M are functionally dependent and if so, find the relation between them.

OR

- B) Divide 24 into three parts such that the continued product of the first, CO4 L3 10M square of second and cube of third is maximum.
- 15. A) i) Evaluate $\iint_A x y dx dy$, where A is the domain bounded by the X-axis, CO5 L3 5M ordinate X = 2a and the curve $x^2 = 4ay$.

ii) Evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} (x^{2}+y^{2}) dy dx$$
 by changing to polar coordinates.

OR

B) Find the volume bounded by the cylinder
$$x^2 + y^2 = 4$$
 and the planes CO5 L3 10M $y+z=4$, $z=0$