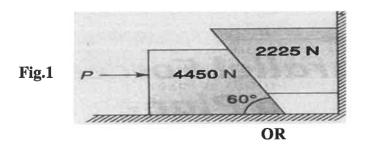
ANURAG Engineering College


(An Autonomous Institution)

I B.Tech II Semester Supplementary Examinations, Jan/Feb-2024

APPLIED MECHANICS (CIVIL ENGINEERING)

Time: 3 Hours Max. Marks: 60

Section – A (Short Answer type questions)			(10 Marks)	
Answer All Questions		Course	B.T	Marks
		Outcome	Level	
1.	How do you specify a Force	CO1	L1	1M
2.	Define Free Body Diagram	CO1	L1	1M
3.	What are the types of Friction?	CO2	L1	1 M
4.	State Theorms of Pappus	CO2	L1	1M
5.	What is polar moment of inertia?	CO3	L1	1 M
6.	What is the significance of radius of gyration?	CO3	L1	1 M
7.	Define Newton's second law and give the formulae for rectangular,	CO4	L1	1M
8.	polar and path coordinates. What is Direct and Oblique Impact?	CO4	L1	1M
9.	What is the Difference between Kinematics and Kinetics?	CO5	L1	1M
10.	State D'Alembert principle	CO5	L1	1M
	Section B (Essay Questions)			
Answer all questions, each question carries equal marks.		$(5 \times 10M = 50M)$		
11. A)	The following forces act at a point.	CO1	L3	10M
	i) 20 N inclined at 30 ⁰ towards North of East.			
	ii) 25 N towards North			
	iii) 30N towards North West, and			
	iv) 35N inclined at 40° towards south of west.			
	Find the Magnitude and Direction of the resultant force.			
	OR			
B)	State and prove Varigon's theorm.	CO1	L3	10M
12. A)	Reference to Fig.1, the coefficients of friction are as follows: 0.25 At the floor, 0.30 at the wall, and 0.20 between blocks. Find the minimum value of a horizontal force P applied to the lower block	CO2	L3	10 M

that will hold the system in equilibrium.

Reference to Fig.2, determine the coordinates x_c and y_c of the center of a 100 mm diameter, circular hole cut in a thin plate so that this point will be the centroid of the remaining shaded area.

CO₂ L3 10M

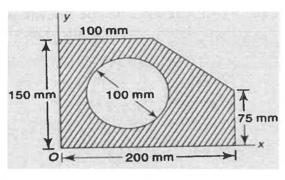
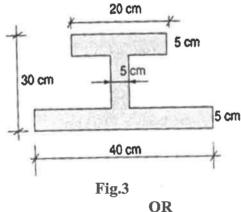



Fig.2

13. A) Find the area moment of inertia about the centroidal axes for a CO₃ L3 10M given area shown in Fig:3

B) Determine the mass moment of inertia of a uniform rod of length L about its: i) centroidal axis normal to rod, and ii) axis at the end of the rod and normal to it.

CO₃

L3 10M

A particle moves along a path $r = 2\theta$ with time $\theta = 5 t^2$, where t is in seconds and Θ is in radians. **Determine** the velocity of the particle when $\Theta = 75^{\circ}$

CO₄

10M


L3

OR

The two spherical balls A and B are travelling on a horizontal line with velocities of 10m/s and 4m/s respectively from left to right. Initially the ball B is to right of A by 30m. The weight of balls A and B are 30N and 50N respectively. Find i) When and where they will collide ii) If the coefficient of restitution is 0.5, Find their velocities after impact.

CO₄

L3 10M 15. A) **Determine** the constant force P to be given for the system of forces shown in Fig. 4 to attain a velocity of 3m/sec after moving 4.5 m from rest. Coefficient of friction between the blocks and plane is 0.3. Pulleys are smooth.

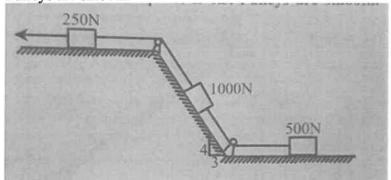


Fig.4 OR

B) A homogeneous cylinder of 100 mm radius has a mass of 0.5 Kg. The cylinder rolls without slipping on a horizontal surface with a translational velocity of 25 cm/s. **Determine** its total kinetic energy.

CO5 L3 10M