ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester Regular/Supplementary Examinations, June/July – 2024 ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS (COMMON TO ALL BRANCHES)

Time: 3 Hours		Max.Marks:60			
Section – A (Short Answer type questions) Answer All Questions 1. Find the integrating factor of $2xy dy - (x^2 + y^2 + 1) dx = 0$		Course Outcome	(10 B.T Level	Marks) Marks	
1.	Find the integrating factor of $2xy dy - (x^2 + y^2 + 1) dx = 0$	CO1	L2	1 M	
2.	Find the orthogonal trajectories of $xy = c$	CO1	L2	1M	
3.	Find the complementary solution of $(D^2 - 2D + 1)y = 0$	CO2	L2	1M	
4.	Find the particular solution of $(D^2 + 2D + 4)y = e^{3x}$	CO2	L2	1 M	
5.	Find $L[\sin t + \cos t]^2$	CO3	L2	1M	
6.	State Convolution theorem	CO3	L1	1 M	
7.	If $\overline{F} = x^2 yz \overline{i} + xy^2 z \overline{j} + xyz^2 \overline{k}$ then $div \overline{F}$ at $(1,0,0)$	CO4	L2	1 M	
	If $\phi = xyz$ then find $grad \phi$	CO4	L2	1 M	
9.	Evaluate $\int_{(0,0)}^{(1,1)} xdy + ydx$ along the straight-line y=x	CO5	L2	1M	
10.	State Stoke's theorem	CO5	L1	1M	
	Section B (Essay Questions)				
Answer all questions, each question carries equal marks.		$(5 \times 10M = 50M)$			
11. A)	Solve $\frac{dy}{dx} - \frac{\operatorname{Tan} y}{1+x} = (1+x)e^x \sec y$	CO1	L3	10M	
В)	A Copper ring is originally at 80° C and cools down to 60° C in 20 minutes, the temperature air being 40° C. What will be the temperature of the ring after 40 minutes from original and also find when the temperature of the ring is 20° C	CO1	L3	10M	
12. A)	Solve the differential equation $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = e^{-x}(x^2 + 2x + 1)$ OR	c CO2	L3	10M	
В)	Solve the differential equation $\frac{d^2y}{dx^2} + y = \cos ec x$ by using method of variation of parameters	CO2	L3	10M	
13. A)	Evaluate the integral $\int_{0}^{\infty} e^{-2t} \frac{\sin ht}{t} dt$ by using laplace transforms	CO3	L3	10M	
В)	Using convolution theorem, find $L^{-1}\left(\frac{s}{(s^2+a^2)^2}\right)$	CO3	L3	10M	

14. A)	Find div \overline{F} and curl \overline{F} where $\overline{F} = grad(x^3 + y^3 + z^3 - 3xyz)$.	CO4	L3	10M
В)	Prove that $\nabla \cdot (r^n \overline{r}) = (n+3)r^n$	CO4	L3	10M
15. A)	Evaluate $\int_C F.d\overline{r}$ where $\overline{F} = xyi + (x^2 + y^2)j$ along the straight line joining the origin and $(1, 2)$	CO5	L3	10M
В)	Using Greens theorem in a plane, evaluate $\int_C [(xy+y^2)dx+x^2dy]$ Where C is the boundary of the region enclosed by $y=x$ and $y=x^2$	CO5	L3	10M