ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester Supplementary Examinations, Jan/Feb-2024

APPLIED PHYSICS (COMMON TO CSE & AIML)

Time: 3 Hours		Max.Marks:60		
	Section – A (Short Answer type questions)		(10	Marks)
Answer All Questions		Course	B.T	Marks
14115110	Tim Questions	Outcome	Level	
1.	What are types of interferences?	CO1	L1	1M
2.	Define polarization with necessary condition.	CO1	L1	1 M
3.	Write de Broglie hypothesis.	CO2	L1	1 M
4.	Illustrate Bloch's theorem.	CO2	L2	1 M
5.	Write Energy band diagram for a semiconductor.	CO3	L1	1M
6.	Compare direct and indirect band gap semiconductors.	CO3	L2	1M
7.	Demonstrate sol-gel process	CO4	L2	1M
8.	Define quantum confinement	CO4	L1	1M
9.	List any two characteristics of LASER.	CO5	L1	1 M
10.	Classify optical fibres based on index.	CO5	L2	1M
	Section B (Essay Questions)			
Answer all questions, each question carries equal marks.		(5	X 10M	= 50M)
11. A)		CO1	L3	10M
11.11)	conditions of interference in thin films by reflection. OR	001		1011
B)	Analyse the intensity maxima and minimum conditions of Fraunhofer diffraction at single slit with necessary derivation.	CO1	L3	10M
12. A)	Develop expressions for one dimensional time independent Schrodinger wave equation.	CO2	L3	10M
	OR			
B)	Analyse the implication of periodic square-well potential in Kronig- Penny model to understand the allowed and forbidden energy levels.	CO2	L3	10M
13. A)	application of Hall Effect in classifying the solids.	CO3	L3	10M
В)	OR Construct, explain the working principle and characteristics of a light emitting diode.	CO3	L3	10M
14. A)	Compare physical vapour deposition and chemical vapour deposition methods for fabricating nanomaterials. OR	CO4	L3	10M
B)	Make use of XRD technique to characterize nanomaterials and list any four applications of nanomaterials.	CO4	L3	10M
15. A)	Compare the production of He-Ne and semiconductor LASERs. OR	CO5	L3	10M
B)	Make use of optical fibres for communication systems with neat diagram.	CO5	L3	10M