ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester Supplementary Examinations, Jan/Feb-2024
ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS
(COMMON TO ALL BRANCHES)

Time: 3 Hours Section – A (Short Answer type questions) Answer All Questions		Max. Marks: 60		
		Course Outcome	(10 B.T Level	Marks) Marks
1.	State Newton's Law of cooling	CO1	L1	1 M
2.	Find the integrating factor of $x^2ydx - (x^3 + y^3)dy = 0$	CO1	L2	1 M
3.	Find $\frac{1}{D^2+4}\sin 2x$	CO2	L2	1M
4.	Find the complementary function of $(D^2 + 2D)y = 0$	CO2	L2	1 M
5.	Define unit step function	CO3	L1	1M
6.	Find $L\{e^{-t}\sin t\}$	CO3	L2	1 M
7.	Find the gradient of $f = x^2 + y^2 z$	CO4	L1	1M
8.	If $\overline{F} = (x+3y)\overline{i} + (y-2z)\overline{j} + (x+pz)\overline{k}$ is solenoidal then find p.	CO4	L2	1 M
9.	State Gauss Divergence theorem	CO5	L1	1M
10.	Define line integral	CO5	L1	1M
	Section B (Essay Questions)			
Answer all questions, each question carries equal marks.		(5	X 10M	=50M)
11. A)		CO1	L3	10M
	OR			
B)	Solve $\frac{dy}{dx} - \frac{\tan y}{1+x} = (1+x)e^x \sec y$	CO1	L3	1 0M
12. A)	Solve $(D^3 + 2D^2 + D)y = e^{2x} + \sin 2x$	CO2	L3	10 M
В)	OR Apply the method of variation of parameters to solve	CO2	L3	10M
ŕ	$\frac{d^2y}{dx^2} + y = \cos ecx$			
13. A)	Find $L\left\{\int_{0}^{t} te^{-t} \sin 2t dt\right\}$	CO3	L3	10M
B)	OR (CO3	L3	10M
D)	Using Convolution theorem, find $L^{-1}\left\{\frac{1}{s(s^2+4)}\right\}$			
14. A)	Show that the vector $(x^2 - yz)\overline{i} + (y^2 - xz)\overline{j} + (z^2 - xy)\overline{k}$ is irrotational	CO4	L3	10M
	and hence find its scalar potential.			

OR

- B) Find the directional derivative of the function $f = x^2 y^2 + 2z^2$ at the CO4 L3 10M point P(1, 2, 3) in the direction of the line PQ where Q = (5, 0, 4)
- 15. A) Use Gauss Divergence Theorem to evaluate $\iint_S \overline{F}.\overline{n} \, ds$ where S is the CO5 L3 10M surface of the solid cut off by the plane x + y + z = a in the first octant.

B) Verify Green's theorem for $\iint_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where C is CO5 L3 10M the region bounded by $y = \sqrt{x}$ and $y = x^2$