ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Regular Examinations, Jan/Feb-2024

OPERATING SYSTEMS

(ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

Time: 3	ime: 3 Hours					Max. Marks: 60		
Section – A (Short Answer type questions) Answer All Questions					Course	B.T	Marks Marks	
4	* *				Outcome	Level	43.6	
1.					CO1	L1	1M	
2.		CO1	L2	1M				
3.	What is the need	CO2	L1	1M				
4.	What the necessary	CO2	L1	1M				
5.	Name the differe	CO3	L1	1M				
6.	Why is a Semapl	CO3	L1	1M				
7.	What is Virtual r	CO4	L1	1M				
8.	Distinguish betw	CO4	L2	1M				
	Which are the functions present in File Management System Call.				CO5	L1	1M	
10.	List the different	File allocation m	ethods.		CO5	L1	1M	
		Sect	ion B (Essay (Questions)				
Answe	r all questions,	each question	carries equal	marks.	(5	X 10M	=50M)	
11. A)	Differentiate am essential properti	ong the following ies.		by defining their	CO1	L2	10M	
	i) Time sharing s							
	iii) Distributed s	system iv) Re	eal time system.					
			OR		CO1			
B)	Explain about the Process Control Block with a neat Diagram.					L2	10 M	
12. A)	Consider the foll	CO2	L3	10M				
	given in millisec							
	Process	Arrival Time	Burst Time	Priority				
	P1	2	2	3				
	P2	3	3	2				
	P3	0	1	4				
	P4	4	2	1				
	P5	3	2	3				
	Draw the Gantt using FCFS, Prior							
	turnaround time							
			OR					
B)	Explain the Reso	urce allocation gr	aph with deadloc	k in detail.	CO2	L2	10M	
13. A)	What is Critical Section Problem? What are the requirements that a critical section must satisfy?					L2	10M	
			OR					
B)	What is Dinning semaphore.	philosopher pro	blem? Explain it	s solution with a	CO3	L2	10M	

R22

14. A)	Given a memory partition of 100K,500K,200K,300K and 600K in order, how would each of the First-fit, Best-fit and Worst-fit algorithms place the processes of 21K,417K,112K and 426K in order? Which algorithm makes the best use of memory? Show the diagram of memory status in each case.	CO4	L3	10M
B)	Explain about paging technique with an example.	CO4	L2	10M
15. A)	Compare and Contrast various File accessing methods in OS. OR	CO5	L3	10M
B)	What are the methods of Free space management of a Disk.	CO5	L2	10 M