ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, June/July-2024

STRENGTH OF MATERIAL - I (CIVIL ENGINEERING)

Time: 3 Hours Max. Marks: 60

	Section – A (Short Answer type questions)			(10	— Marks)
Ansv	ver All Questions		Course	B.T	Marks
1			Outcome	Level	13.6
1.	Define Stress and strain.		CO1	L1	1M
2.	Define poisson's ratio.		CO1	L1	1M
3.	Define Point of contraflexure.		CO2	L1	1M
4.	What are the sign conventions for shear force and bending mon general?	nent in	CO2	L2	1M
5.	Write the shear stress equations and explain the terms?		CO3	L2	1M
6.	Write section modulus formula for triangular section?		CO3	L2	1 M
7.	What is conjugate beam?		CO4	L1	1 M
8.	Write maximum deflection of simply supported beam carrying point at center.	nt load	CO4	L1	1M
9.	Define Mohr circle?		CO5	L1	1 M
10.	Write about maximum principal strain theory?		CO5	L2	1M
	Section B (Essay Questions)				
Answer all questions, each question carries equal marks.		$(5 \times 10M = 50M)$			
11.	With the help of strain-stress curve for mild steel, explain the foll	owing	COÌ	L2	10M
A)	terms.	J			
/	i) Limit of proportionality.				
	ii) Yield point.				
	iii) Ultimate stress.				
	iv) Breaking point.				
	OR				
B)	Determine the change in length, breath and thickness of steel ba	ar 6 m	CO1	L2	10M
D)	long, 50 mm wide and 35 mm thick, when subjected to an axial p		001		10111
	150 KN in the direction of its length. Take E=200 Gpa and Poisson				
	= 0.3.	STatio			
	- 0.5.				
12.	A simply supported beam 8 m long is carrying a uniformly distribu	nted	CO2	L2	10M
	load of 4 kN/m over a length of 2 m from the right end and point le		CO2	LL	10141
A)	centre. Draw shear force and bending moment diagrams for the be				
	•	alli			
	and calculate the maximum bending moment on the beam.				
D)	OR	:- =-	CO2	тэ	101/
B)	Draw shear force & bending moment diagram for the beam shown	ın 11g.	CO2	L3	10M
	& define point of contra-flexure.				
	60 kN 40 kN				

13. A)	Obtain the shear stress distribution for a rectangular cross section 250×400 mm subjected to a shear force of 80 KN. Calculate the maximum and average shear stress.	CO3	L2	10M
	OR			
B)	Derive the bending equation from fundamentals $M/I = f/y = E/R-3$	CO3	L2	10M
14. A)	beam is simply supported at its ends over a span of 10 m and carries two concentrated loads of 150 KN and 80 KN at a distance of 4 m and 6 m respectively from the left support. Calculate i) Slope at the left support	CO4	L2	10M
	ii) Slope and deflection under the 150 KN load. Assume $EI = 36 \times 10^4$			
	KN-m			
	OR			
B)	Find the deflection at the free end of a cantilever of length 'L' subjected to UDL of intensity 'w' per unit length over its entire span. Use Double integration method.	CO4	L2	10M
15. A)	Mention the different theories of failure. Explain about any two.	CO5	L2	10M
	OR			
B)	A mild steel plate is stressed as shown in fig. 7 Before stressing, a circle of 300mm dia. Is drawn on the plate. Determine the lengths & directions of the major & minor axes of the ellipse into which the circle deforms	CO5	L3	10M

after stressing. Poisson's ratio = 0.3, modulus of elasticity = 200 kN /