ANURAG Engineering College

(An Autonomous Institution)

II B.Tech. I Semester Regular Examinations, Jan/Feb-2024

PROBABILITY AND STATISTICS (COMMON TO CIVIL, CSE, IT AND AI&ML)

Time: 3 Hours

Max. Marks: 60

Section – A (Short Answer type questions)			(10 Marks)		
Answer All Questions		Course Outcome	B.T Level	Marks	
1.	Define conditional probability of any two events of sample space	CO1	L1	1M	
2.	Distinguish between discrete and continuous random variables	CO1	L2	1M	
3.	Define variance of a random variable	CO2	L1	1M	
4.	Write down the probability mass function of a Poisson distribution and what are the mean and variance of the distribution?	CO2	L1	1M	
5.	State Area property of normal and or standard normal distribution	CO3	L2	1M	
6.	Define t-distribution	CO3	L1	1M	
7.	Define Null and Alternate Hypothesis	CO4	L1	1M	
8.	Illustrate the errors in sampling	CO4	L2	1M	
9.	Define stochastic process	CO5	L1	1M	
10.	Define markov chain	CO5	L1	1M	

Section B (Essay Questions)

Answer all questions, each question carries equal marks.

11. A) i) Let A and B be the two events such that P(A)=1/2, P(B)=1/3and $P(A \cap B) = 1/4$ then obtain the conditional probabilities of the events.

> ii) A factory produces a certain type of outputs by three types of machine. The respective production figures are:Machine -Machine – II: 2,500 Units; Machine – III: I: 3.000 Units: 4,500 Units. Past experience shows that 1% of the output produced by the Machine - I is defective. The corresponding data for the other two machines are 1.2% and 2% respectively. An item is drawn at random from the day's production run and is found to be defective. What is the probability of getting a defective item? What is the probability that it comes from the output of Machine-I

OR

B) The error in reaction temperature, in ${}^{\circ}C$, for a controlled laboratory experiment is a continuous random variable X having the probability density function:

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2\\ 0, & else where \end{cases}$$

- i) Verify that the above is probability density function or not
- ii) Find P(0<X<1), P(0<X \leq 1.5)
- iii) Compute the mean, variance of X

 $(5 \times 10M = 50M)$

CO₁ L3 4M

6M

10M

L3

CO₁

12. A)	i) If X and Y are any two independent random va $V(aX+bY) = a^2V(X) + b^2V(Y)$, where a a	riables, prove that nd b are any two	CO2	L3	4M	
	constants. ii) Given the following probability distribution wariable X: Values of X, x 1 2 3 4 p(x) 0.05 0.10 0.30 0.30 0 Compute a) V(X) b) V(2X+7) OR	of a discrete random 5			6M	
В)						
13. A)	In a distribution exactly normal, 10.03% of the kilogram weight and 89.97% of the items are weight. What are the mean and standard deviation OR	under 70-kilogram	CO3	L3	10M	
B)	A population consists of observations 1, 4, 9, 16 the mean and variance of the population. Wr samples of size 2 without replacement. Consdistribution about mean. Show that the mean of equal to the population mean.	ite all the possible struct the sampling	CO3	L3	10M	
14. A)	Sample Size 8 Sample Mean 1,234hours 1, Sample S.D. 36hours Is the difference in the means sufficient to warrar superior to the Type II regarding the length of life significance)	Type-II 7 036hours 40hours nt that the Type I is	CO4	L3	10M	
	An investigation of two kinds of photocopying that 71 failures of the first kind of equipment to 83.2 minutes to repair with a standard deviation while 75 failures of second kind of equipment too 90.8 minutes with a standard deviation of 21.4 hypothesis that on the average it takes an equal repair either kind of equipment at the 0.05 level of	n of 19.3 minutes, k on the average of minutes. Test the amount of time to	CO4	L3	10M	

L3

10M

CO₅

- 15. A) Assume that a man's profession can be classified as professional, skilled labourer, or unskilled labourer. Assume that, of the sons of professional men, 80 percent are professional, 10 percent are skilled labourers, and 10 percent are unskilled labourers. In the case of sons of skilled labourers, 60 percent are skilled labourers, 20 percent are professional, and 20 percent are unskilled. Finally, in the case of unskilled labourers, 50 percent of the sons are unskilled labourers, and 25 percent each are in the other two categories. Assume that every man has at least one son and form a Markov chain by following the profession of a randomly chosen son of a given family through several generations.
 - i) Find a matrix of transition probabilities.
 - ii) Find the probability that a randomly chosen grandson of an unskilled labourer is a professional man.

OR

B) Consider a three-state Markov chain with the transition matrix with the initial probabilities $P_0 = (0.1, 0.3, 0.6)$

CO5 L3 10M

$$P = \begin{bmatrix} 0 & \frac{1}{4} & \frac{3}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$$

- i) Find the probabilities after two transitions.
- ii) Find limiting probabilities.

