ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, Jan/Feb-2024
DISCRETE MATHEMATICAL STRUCTURES
(COMPUTER SCIENCE AND ENGINEERING)

Time: 3 Hours	Max. Marks: 75
---------------	----------------

	Section – A (Short Answer type questions) r All Questions	Course Outcome	(25 B.T Level	Marks) Marks		
1.	Write the symbolic form of the proposition "If tigers have wings then the earth revolves around the Sun". Also find its truth value	CO1	2	2M		
2. 3.	State DeMorgan, idempotent and identity laws How many distinct 4-digit ATM PINs containing all different digits can be formed?	CO1 CO2	1 2	3M 2M		
4. 5.	Find the total number of diagonals in a decagon Find the generating function for $\{2024^n\}_{n=1}^{\infty}$	CO2 CO3	1 1	3M 2M		
6.	Compute the characteristic equation and its roots for the recurrence relation $a_n = 5a_{n-1} - 6a_{n-2}$ for $n \ge 2$, $a_0 = 1$, $a_1 = 0$	CO3	1	3M		
7.	Is Z the set of integers a monoid under usual multiplication? Justify your answer	CO4	1	2M		
8.	If $S = \{2024, 2025, 2026\}$ then show that $(P(S), \subseteq)$ is a lattice	CO4	2	3M		
9.	In a round-robin tournament the A team beats the B,Cand D teams,B beats C and D,C beats D.Model this outcome with a directed graph	CO5	2	2M		
10.		CO5	1	3M		
Section B (Essay Questions)						
	all questions, each question carries equal marks.	(5	X 10M:	= 50M)		
11. A)	Show that $(p \land (p \rightarrow q)) \rightarrow q$ and $p \land (q \land \neg p)$ are tautology and contradiction respectively	CO1	2	10M		
B)	i) Define Existential Quantifiers and Universal Quantifiers with	CO1	2	5M		
D)	examples. ii) Show that $\{[p \to (q \lor r)] \land \neg q\} \to (p \to r)$ is a Tautology.	COI	44	5M		
	If show that $([p / (q \vee r)]/(q) / (p / r))$ is a randoogy.			JIVI		
12. A)	If all the positive numbers are formed by taking all the digits in 8-digit number 20242024 and are arranged in ascending order then what will be the rank of that 8-digit number? OR	CO2	3	10M		
В)	There are 10 points on a plane and four of them are collinear. Find the total number of distinct straight lines, triangles, quadrilaterals and hexagons formed by joining these points with straight edge	CO2	3	10M		
13. A)	Solve $a_{n+2} - 2a_{n+1} + a_n = 2^n$, $a_0 = 2$, $a_1 = 1$ by applying generating functions	CO3	2	10M		
B)	Find solution to the recurrence relation $a_n = 2a_{n-1} + 5a_{n-2} - 6a_{n-3}$ with initial conditions $a_0 = 7, a_1 = -4, a_2 = 8$	CO3	2	10M		

CO5

14. A)	Let A be a given finite set, $P(A)$ be its power set and \subseteq be the	CO4	2	10M
	inclusion relation on $P(A)$. Draw Hassee diagram for $(P(A), \subseteq)$ if			
	A={0},{0,2}.{0,2,4}			
	OR			
B)	Let R be a binary relation on the set of positive integers such that	CO4	3	10M
	R= $\{(a, b): a = b^2\}$. Is R Reflexive? Symmetric? Antisymmetric?			
	Transitive? An equivance relation? A partial order relation?			
	·			
15. A)	Show that the maximum number of edges in a simple disconnected	CO5	2	10 M
	(n-k)(n-k+1)			
	graph G with n vertices and k components is $\frac{(n-k)(n-k+1)}{2}$			

OR

B) i) Verify whether the following graph is planar or not.

ii) State and prove Euler formula.

5M

5M