ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, June/July – 2024

ANALOG CIRCUITS

(ELECTRONICS AND COMMUNICATION ENGINEERING)

Time: 3 Hours Max. Marks: 60							
9	(10	Marks)					
Section – A (Short Answer type questions) Answer All Questions		Course	B.T	Marks			
1	4.1.2.1.2.1.	Outcome	Level				
1.	Define transistor biasing	CO1	L1	1 M			
2.	List the typical h- parameters of a CE model.	CO1	L2	1 M			
3.	Draw the MOS Small signal model	CO2	L1	1 M			
4.	List two characteristics of common drain amplifier	CO2	L1	1 M			
5.	Define Cascode amplifier.	CO3	L1	1 M			
6.	Draw the Hybrid $-\pi$ model of Common Emitter transistor	CO3	L2	1M			
7.	Draw the block diagram of Voltage shunt feedback.	CO4	L2	1M			
8.	Does the negative feedback decrease or increase the voltage gain.	CO4	L2	1M			
9.	Which types of oscillators are suitable for low frequency application	CO5	L1	1M			
10.	What is the condition for sustained oscillations	CO5	L1	1 M			
	Section B (Essay Questions)						
Answer all questions, each question carries equal marks.			X 10M	=50M)			
11. A)	Model a Fixed Bias circuit for the following specification V_{CC} =	CO1	L3	10M			
11.11)	15V; $V_{CE} = 5V$; $V_{BE} = 0.7V$; $I_C = 5mA$; and $\beta = 100$ after calculating required resistance values.		20	10111			
	OR	901	* •	407.5			
В)	Perform the generalized analysis of transistor amplifier model using h-parameters.	CO1	L3	10M			
12. A)	derive equation for voltage gain.	CO2	L2	10M			
77.	OR 116 11 11 11 11	G02	Y 0	107.5			
В)	Describe operation of Common source amplifier with diode connected load	CO2	L2	10M			
13. A)	Draw the circuit diagram of Darlington pair amplifier and derive its	CO3	L2	10M			
	Input resistance.						
	OR						
В)	List the Different coupling schemes used in amplifiers and explain any one with circuit diagram.	CO3	L2	10M			
14. A)	A voltage-series negative feedback amplifier has a voltage gain without feedback A=500, input resistance Ri=3k Ω , output resistance Ro=20k Ω and feedback ratio β =0.01. Determine the voltage gain with feedback Af, input resistance Rif and output resistance Rof of the amplifier with feedback. OR	CO4	L3	10M			
B)	Develop the block diagram of current series feedback amplifier and explain.	CO4	L3	10M			

15. A)	Calculate the range over which the capacitor is required to vary in transistorized RC phase shift oscillator, with $1K\Omega$ Resistor to have the frequency range $1KHz$ to $1.5KHz$.	CO5	L3	10M
	OR			
B)	Build the Colpitt's oscillator by using BJT and derive the expression for frequency of oscillations.	CO5	L3	10M