i) Trapezoidal rule

ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, June/July – 2024 NUMERICAL METHODS AND COMPLEX VARIABLES (COMMON TO EEE & ECE)

Time: 3 Hours								Max. Marks: 60		
Section – A (Short Answer type questions) Answer All Questions							Course	B.T	Marks) Marks	
							Outcome	Level		
1.	Explain period			amples.			CO1	L1	1M	
2.	State Fourier integral theorem.						CO1	L1	1M	
3.	Gauss Seidal n	CO2	L1	1M						
4.	Write Lagrange's Interpolation formula						CO2	L1	1M	
5.	Use the trapezoidal rule evaluate : $\int_{1}^{2} \frac{1}{x} dx$ with h=0.5						CO3	L1	1M	
6.	Find y(1) Use the Eulers formula for $\frac{dy}{dx} = x + y$, with y(0)=1						CO3	L1	1M	
7.	1						CO4	L1	1M	
8.							CO4	L1	1M	
9.	Obtain singular point of $f(z) = \frac{1}{z-2}$						CO5	L1	1M	
10.	State Cauchy's theorem						CO5	L1	1M	
				ion B (Ess	• -					
Answer all questions, each question carries equal marks.							(5		=50M)	
11. A)	11. A) Obtain a Fourier series to represent $f(x)=x-x^2$ from $x=-\pi$ to						CO1	L2	10M	
$x = \pi$ and deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$ OR										
B)	,						CO1	L3	10M	
	$f(x) = \begin{cases} \cos ax \\ 0, \end{cases}$	$if \ 0 < x$ $if \ x \ge a$: < a							
12. A)	2. A) Obtain a real root of the equation $-3x + \cos x + 1 = 0$, by Newton Raphson Method up to four decimal places OR						CO2	L2	10M	
B)	From the following data, Estimate the number of persons having incomes at 10, using appropriate interpolation formula.						CO2	L3	10M	
	Income:	4	5	6	8	9				
	No. of persons:	6	9	7	5	10				
13. A)	Evaluate $\int_{0}^{6} \frac{dx}{1+x}$	by usi	ng		1		CO3	L2	10M	

ii) simpson's 1/3 rule

points of the transformation

B) Solve the initial value problem $\frac{dy}{dx} = -2xy^2$, y(0) = 1 with h=0.5 on the interval[0, 1]. Use the fourth order classical Runge-Kutta method

14. A) Obtain the analytic function $f(z) = u(r, \theta) + iv(r, \theta)$ such that CO4 L2 10M $v(r, \theta) = r^2 \cos 2\theta - r \cos \theta + 2$.

OR

B) Obtain the bilinear transformation that maps $z_1 = 1, z_2 = i$, $z_3 = -1$ into CO4 L3 10M the points $w_1 = 0, w_2 = 1, w_3 = \infty$ respectively. Also determine the fixed

- 15. A) Evaluate, using Cauchy's integral formula $\oint_C \frac{e^{2z}}{(z+i)^4} dz$ where C is the circle |z|=3
 - Obtain Taylor's expansion of $f(z) = \frac{1}{(z+1)^2}$ about the point z=-i CO5 L3 10M