ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Regular Examinations, Jan/Feb-2024 ELECTROMAGNETIC FIELDS

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 Hours Max.Marks:60

Section – A (Short Answer type questions)			(10 Marks)		
Answer All Questions			B.T	Marks	
		Outcome	Level		
1.	Define electric field intensity.	CO1	L1	1 M	
2.	State Gauss law.	CO1	L2	1M	
3.	State ohm's law in point form and write its significance.	CO2	L2	1M	
4. 5.	Write Poisson's equation. Write about Ampere's circuital law.	CO2	L1	1M	
6.	Define magnetic dipole moment and write its significance.	CO3 CO3	L1 L2	1M	
7.	Give the statement of Faraday's law.	CO3	L2 L2	1M 1M	
8.	Write Maxwell's equations for Free Space in point form.	CO4	L1	1M	
9.	State Poynting theorem.	CO5	L1	1M	
10.	What is the significance of frequency in electromagnetic waves?	CO5	L2	1M	
	Section B (Essay Questions)				
Answe	r all questions, each question carries equal marks.	(5	X 10M :	= 50M)	
11. A)	State and explain coulomb's law and express the force between point charges in free space as vector.	CO1	L2	10M	
77.	OR				
В)	Derive the expression for electric field intensity due to infinite sheet of charge.	CO1	L2	10M	
12. A)	Derive the expression for capacitance of a coaxial capacitor of inner radius 'a', outer radius of 'b' and length L.	CO2	L3	10M	
B)	OR A spherical condenser has a capacity of 54 pF. It consists of two	CO2	1.0	101/4	
D)	concentric spheres differing in radii by 4 cm and having air as dielectric. Find their radii.	CO2	L2	10M	
13. A)	Using Biot-savart's law, obtain the expression for the magnetic	CO3	L2	10M	
,	flux density 'B' due to steady surface current in free space. OR			10171	
B)	Explain the concept of scalar and vector magnetic potentials	CO3	L3	10M	
14. A)	Derive the Maxwell's equations in point form. OR	CO4	L3	10M	
B)	Derive the expression for force between two current carrying conductors.	CO4	L2	10M	
15. A)	Explain wave equation in uniform plane. OR	CO5	L2	10M	
B)	Derive the expressions describing propagation of uniform plane wave in good conductor.	CO5	L2	10M	