ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Regular Examinations, Jan/Feb-2024 COMPUTER ORGANIZATION AND MICROPROCESSOR (INFORMATION TECHNOLOGY)

Time: 3 Hours		Max. Marks: 60		
Section – A (Short Answer type questions)				Marks)
Answe	er All Questions	Course	B.T	Marks
		Outcome	Level	
1.	Define Computer Architecture.	CO1	L1	1 M
2.	What is Instruction Code.	CO1	L1	1 M
3.	Define segment register.	CO2	L1	1 M
4.	What is the advantage of condition code flag register.	CO2	L1	1M
5.	Define OPCODE.	CO3	L1	1M
6.	What is the use of MOVESB instruction.	CO3	L1	1M
7.	What is the use of signed 2's complement representation.	CO4	L1	1 M
8.	Define Isolated I/O.	CO4	L1	1M
9.	What do you mean by parallel processing? How it is achieved using	CO5	L1	1M
	pipelining concept?			
10.	Define Vector Processing.	CO5	L1	1M
	Section B (Essay Questions)			
Answe	r all questions, each question carries equal marks.	(5)	X 10M	= 50M)
11. A)	Explain different types of basic registers and how they are connected	CO1	L2	10M
	to a common bus?			
77)	OR			
В)	Explain about Input-Output Interrupt.	CO1	L2	10M
12. A)	Explain about general bus operation cycle of 8086.	CO2	L2	10M
,	OR			
B)	Illustrate different special processor activities in 8086.	CO2	L2	10M
13. A)	Write an Assembly Level program to find out decimal addition of	CO3	L2	10M
	Sixteen four-digit decimal numbers.			
	OR			
B)	Write an Assembly Language program to find out transpose of a 3x3 matrix.	CO3	L2	10M
14. A)	Illustrate Division Algorithm with an example.	CO4	L3	10M
	OR	004	133	10141
B)	Explain about Daisy-Chain Priority with interrupt with a neat sketch.	CO4	L2	10M
15. A).	Explain about memory hierarchy with a neat sketch.	CO5	L2	10 M
	OR			
B)	Explain any two memory mapping methods in cache memory.	CO5	L2	10M

