ANURAG Engineering College

(An Autonomous Institution)

II B.Tech II Semester Regular Examinations, June/July - 2024

STRUCTURAL ANALYSIS - I (CIVIL ENGINEERING)

Time: 3 Hours

Max. Marks: 60

Section – A (Short Answer type questions)			(10 Marks)		
Answer All Questions		Course	B.T	Marks	
	(Outcome	Level		
1.	Define types of Frames.	CO1	L1	1M	
2.	Determine kinematic indeterminacy for rigid jointed space truss if members are inextensible?	CO1	L2	1M	
3.	Define the static and kinematic indeterminacy of beam.	CO2	L2	1M	
4.	Define the types of Arches.	CO2	L3	1M	
5.	Write the effects of sinking supports.	CO3	L2	1M	
6.	Draw BMD for Propped cantilever with point load at centre.	CO3	L3	1M	
7.	Write clapyron's theorem.	CO4	L2	1M	
8.	Draw I.L.D for the reaction at A for a simply supported beam AB.	CO4	L2	1M	
9.	Write assumptions in slope deflection method.	CO5	L3	1M	
10.	Define ILD.	CO5	L3	1 M	
Section B (Essay Questions)					
Answer all questions, each question carries equal marks.			$(5 \times 10M = 50M)$		

Calculate the forces of the member of a given truss. 11. A)

CO₁ L3 10M

B) Define Frame & types of frames in detail.

CO₁ L3 10M

A Three hinged arch has a span of 30m and rise of 10 m. The arch carries udl of 0.6KN/m on the left half of the span. It also carries two concentrated load of 1.6KN & 1KN at 5m & 10m from right end. Determine Reactions at the supports.

CO₂ L2 10M

OR

Calculate the reactions and Maximum Bending Moment for the given three hinged parabolic arch as shown in fig.

CO₂ L2

10M

10M

13. A) A fixed beam of span 6m is loaded with point loads of 150kN at a2m from each support .Draw the BMD & SFD . Find the max deflection take E= 2X10^5 KN/M^2, I= 8X10^8mm^4

OR

B) Analyse a propped cantilever beam as shown in the fig and draw the CO3 L2 10M SF And BM diagrams.

14. A) A continuous beam ABCD rests on four supports and the three spans are AB=5m BC=10m CD=3m. The udl loads are 3kN/m,2kN/m,4kN/m on AB, BC, CD respectively. Determine bending moments at the supports B & C and also plot the shear force & bending moment diagrams.

OR

B) A continuous beam of ABC of uniform section is fixed at A and simply supported at B & C. The spans AB and BC are 4m, 3m respectively the beam carries a udl of 8kN/m throught out the span. Draw bending moment and shear force diagram.

CO4 L3 10M

L3

10M

10M

15. A) A uniform load of 2000N/m, 5 m long crosses a girder of 20m span from left to right. Calculate the maximum S.F and B.M at a section 8M from left support.

CO5 L2

OR

B) Two-point loads of 5000N and 2000N spaced 3M a part cross a girder of 9 m span from left to right, with smaller loading leading. Draw the SF and BM diagrams. Find the position and amount of absolute maximum bending moment.

CO5 L3 10M