Model Question Paper ANURAG Engineering College (An Autonomous Institution) III B.Tech II Semester Regular Examinations, June-2025 FORMAL LANGUAGES AND AUTOMATA THEORY (CSE)

Time: 3 Hours

Max.Marks:60

Section – A (Short Answer type questions)					(10 Marks)				
Answer All Questions					B.T Level	Marks			
1.	Define Finite Automata	CO1	L1	1M					
2.	List out the applications	CO1	L1	1M					
3.	Define a Regular Expres	CO2	L1	1M					
4.	List out any four Identity	CO2	L1	1M					
5.	Define CFG.	CO3	L1	1M					
6.	What is an Ambiguous	CO3	L1	1M					
7.	Difference between Fini	CO4	L1	1M					
8.	State different ways of A	CO4	L1	1M					
9.	List out different types of	CO5	L1	1M					
10.	What is Post Correspond		CO5	L1	1M				
Section B (Essay Questions)									
Answe	r all questions, each	question carries	s equal marks.	(5	X10M	= 50M)			
11.	strings of any number	of 0's followed of 2's And also co OR llowing NFA.	language consisting the by any number of 1's onvert into NFA without 1 q0 q1 q3 q2	CO1 CO1	L3 L3	10M 10M			
13.	Convert the following R (a+b)*(aa+bb)(a+b)*	CO2	L3	10M					
14.	Explain about Pumping	CO2	L2	10M					
15.	Construct CNF for the g	CO3	L3	10M					

	$S \rightarrow A B C$ $A \rightarrow aAa B$ $B \rightarrow bB bb$ $C \rightarrow caa D$						
	$C \rightarrow a Caa/D D \rightarrow baD/abD/aa$						
OR							
16.	i) Describe about Ambiguity in CFG with an Example.	CO3	L3	5M			
	ii) According to the following grammar			5M			
	$E \rightarrow E + E / E * E / id$						
	Find the LMD and RMD of following string id+id*id						
17.	Construct PDA for WW ^r over $\{0,1\}^*$	CO4	L3	10M			
	OR						
18.	Construct the equivalent PDA for given grammar whose	CO4	L3	10M			
	productions are						
	S->aAA						
	A->as/bs/a						
19.	Design a Turing Machine to accept $L=\{WcW^r W \text{ is in } (a+b)^*\}$	CO5	L3	10M			
OR							
20.	Write a short note on post correspondence problem with suitable example?	CO5	L2	10M			