Model Question Paper ANURAG Engineering College (An Autonomous Institution) III B.Tech.II Semester Regular Examinations, June-2025 INTERNET OF THINGS (CSE)

Time: 3 Hours

Max.Marks:60

Section – A (Short Answer type questions)		(10 Marks)				
Answer All Questions		Course	B.T	Monka		
			Level	магкя		
1.	What are the key characteristics of IoT	CO1	L1	1M		
2.	What are the different levels of IoT deployment	CO1	L2	1M		
3.	How do SDN and NFV enhance IoT systems?	CO2	L1	1M		
4.	What is M2M, and how does it relate to IoT?	CO2	L2	1M		
5.	List the key data types available in Python.	CO3	L1	1M		
6.	Why is exception handling important in Python programming?	CO3	L2	1M		
7.	How does Django help in IoT-based web applications?	CO4	L1	1M		
8.	What are the main features of Raspberry Pi for IoT applications?	CO4	L2	1M		
9.	How is IoT applied in home automation?	CO5	L1	1M		
10.	Explain the use of IoT in precision agriculture	CO5	L2	1M		
Section – B (Essay Questions)						
Answei	all questions, each question carries equal marks.	(5	X10M	= 50M)		
11.	Explain the logical design of IoT in detail	CO1	L3	10M		
	I I I I I I I I I I I I I I I I I I I		_			
	OR					
12.	How can IoT be implemented in different domains such as	CO1	L1	10M		
	healthcare and agriculture? Give examples					
13.	Describe how NETCONF and YANG are used for IoT system	CO2	L3	10M		
	management with a real-time example.					
OR						
14.	Compare the advantages and disadvantages of using SNMP for	CO2	L2	10M		
	IoT system management					
15.	Develop a basic Python script to demonstrate IoT data collection	CO3	L3	10M		
	using file handling and data structures.					
OR						
16.	Illustrate a Python-based IoT solution for monitoring temperature	CO3	L1	10M		
	and humidity using appropriate libraries					
17.	Describe how to program a Raspberry Pi using Python to collect	CO4	L3	10M		
	and process IoT sensor data.					
OR						
18.	Compare different cloud storage models for IoT applications and	CO4	L2	10M		
	suggest the best option for real-time data processing					
19.	Examine how IoT is transforming environmental monitoring with	CO5	L3	10M		
	real-world examples.					
OR						

R22

Question Paper Code: CS632PE			N 22		
20.	Explain smart agriculture IoT-based system for crop monitoring	CO5	L2	10M	
	and suggest suitable sensors and technologies.				

D??