Model Question Paper ANURAG Engineering College

(An Autonomous Institution)

III B.Tech. II Semester Regular Examinations, June -2025 RENEWABLE ENERGY SOURCES (COMMON TO CIVIL & CSE)

Time: 3 Hours Max.Marks:60

	Hours	171	.axv1a1	rks:6U
Section – A (Short Answer type questions) (10]				
Answer All Questions		Course Outcome	B.T Level	Marks
1.	What is the function of a wind turbine?	CO1	L1	1M
2.	What is the primary advantage of renewable energy over fossil fuels?	CO1	L1	1M
3.	Which material is commonly used in solar cells for photovoltaic power plants?	CO2	L1	1M
4.	What is the primary function of a fuel cell?	CO2	L1	1M
5.	Which principle does an induction generator work on?	CO3	L1	1M
6.	What is the role of reactive power in an induction generator?	CO3	L1	1M
7.	What is the primary purpose of an energy storage system?	CO4	L1	1M
8.	Which storage system is used in hydroelectric power plants?	CO4	L1	1M
9.	What is the main advantage of integrating multiple renewable energy sources?	CO5	L1	1M
10.	What is meant by the interconnection of alternative energy sources with the grid?	CO5	L1	1M
	Section B (Essay Questions)			
Answer	all questions, each question carries equal marks. (5 2	X10M = 50M)	
11.	Define distributed generation and explain how it differs from	CO1	L3	10M
	centralized power generation. Discuss its impact on grid stability			
	and energy security?			
	OR		<u>I</u>	
12.	Classify wind turbines based on their design and working	CO1	L2	10M
	principles. Compare horizontal-axis wind turbines (HAWT) and vertical-axis wind turbines (VAWT)?			
13.	Explain the output characteristics of a solar cell, including current-voltage (I-V) curves and power-voltage (P-V) curves?	CO2	L3	10M
	OR		T	
14.	Compare and contrast low-temperature and high-temperature fuel cells. Discuss their operating principles, efficiency, and applications?	CO2	L3	10M
15.	Describe the working principle of a self-excited induction generator	CO3	L3	10M
15.	(SEIG). How is self-excitation achieved?	203		10111
4.7	OR	000	1.2	107.5
16.	What is the significance of magnetizing curves in self-excited induction generators? Explain the self-excitation process using relevant equations.	CO3	L2	10M

Question Paper Code:

17.	Discuss the construction, working principles, and performance	CO4	L3	10M	
	characteristics of lead-acid batteries. What are the main advantages				
	and limitations of using lead-acid batteries for energy storage in				
	renewable applications?				
OR					
18.	Explain the operating mechanism of pumped hydroelectric energy	CO4	L2	10M	
	storage (PHES). How do factors like geographical location and				
	environmental impact influence the feasibility of PHES projects?				
19.	Explain the principles of power injection in distributed generation	CO5	L2	10M	
	systems. How does power injection support grid stability and				
	overall system performance in renewable energy integration?				
	OR				
20.	Discuss how interconnection considerations affect the economic	CO5	L3	10M	
	viability and practical implementation of renewable energy				
	projects. What cost implications and benefits are associated with				
	meeting interconnection standards?				