Model Question Paper ANURAG Engineering College (An Autonomous Institution) III B.Tech. II Semester Regular Examinations, June -2025 STRUCTURAL ENGINEERING-II (STEEL STRUCTURES) (CIVIL ENGINEERING)

Time: 3 Hours M				rks:60				
Section – A (Short Answer type questions)			(10 Marks)					
Answer All Questions		Course Outcome	B.T Level	Marks				
1.	List out mechanical properties of steel?	CO1	L1	1M				
2.	What are the types of connections in steel structures?	CO1	L1	1M				
3.	Define Slenderness ratio.	CO2	L1	1M				
4.	Differentiate the laced and battened columns.	CO2	L2	1M				
5.	What is plastic section and section modulus?	CO3	L1	1M				
6.	Explain laterally supported beams?	CO3	L1	1M				
7.	Write about economical depth of plate girder?	CO4	L2	1M				
8.	What are the advantages of plate girder?	CO4	L1	1M				
9.	Classify the types of roofs?	CO5	L1	1M				
10.	What are the uses of purlin in truss?	CO5	L1	1M				
Section B (Essay Questions)								
Answer all questions, each question carries equal marks. (5 X10		K10M =	$\mathbf{OM} = \mathbf{50M}$					
11.	Explain the load combinations for different Limit states?	CO1	L2	10M				
	OR		-					
12.	Design a lap joint between the two plates each of width 120mm, if the thickness of one plate is 16mm and the other is 12mm. The joint has to transfer a design load of 160kN. The plates are of Fe410 grade. Use Bearing type bolts.	CO1	L3	10M				
13	Discuss the design procedure of tension members?	CO2	12	10M				
13.	OR	02	L	10101				
14.	Design a Double angle tension member connected on each side of a 10mm thick gusset plate, to carry an axial factored load of 375kN. Use 20mm black bolts. Assume shop connection.	CO2	L3	10M				
15.	Briefly explain the classifications of plastic sections?	CO3	L2	10M				
OR								
16.	Design a simply supported beam of 10m effective span carrying a total factored load of 60kN/M. The depth of beam should not exceed 500mm. The compression flange of the beam is laterally supported by floor construction. Assume stiff end bearing is 175mm.	CO3	L3	10M				
		<u>co</u> t		1035				
17.	Explain the design procedure of plate girder?	CO4	L2	10M				
10	UK	004	I 2	1014				
18.	Design a Welded plate girder of span 24m to carry a superimposed load of 35Kn/m. Avoid use of bearing and intermediate stiffeners. Use Fe 415 steel.	04	L3	10M				

Ouestion	Paper	Code:	CE603PC
C			

R22

19.	Design a I-section purlin for an industrial building to support a galvanized corrugated iron sheet given,	CO5	L3	10M
	Spacing of truss – 6m			
	Inclination of main rafter - 30°			
	Spacing of purlin – 1.5m			
	Height of purlin – 1.5m			
	Weight of corrugated sheeting -130 N/mm ²			
	Live load -0.6 N/mm^2			
	Wind load – 1.8 N/mm^2			
	Yield stress of steel – 250Mpa			
OR				
20.	Explain the design procedure of truss?	CO5	L2	10M